首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements and theory of diurnal and semidiurnal tidal oscillations between about 25 and 80 km are reviewed. At latitudes greater than about 30°, meridional (N-S) wind components are consistently in quadrature with and similar to the zonal (E-W) components. The tidal structures are interpreted as a superposition of quasi-steady higher-order modes excited in the troposphere by sources of limited extent (1,000–10,000 km). At latitudes less than about 30°, steady or quasi-steady diurnal and semidiurnal components are not necessarily the dominant components of the daily variation. At high latitudes diurnal phases generally show little change with height in comparison with observations at lower latitudes, in accord with the latitudinal properties of diurnal modes with positive and negative equivalent depths.  相似文献   

2.
Available rocketsonde information has been used to compile tables of monthly mean temperature, pressure, density and zonal wind for the middle atmosphere of the southern hemisphere with the purpose of revising similar tables presented to COSPAR earlier. The altitude range is 25 to 80 km in steps of 5 km. The latitude range is 0° to 70°S with a 10° step. The compatability of different sets of temperature measurements is discussed. Mean values of temperature, pressure and zonal wind obtained for the southern hemisphere are compared with northern hemisphere model values. Large differences between the hemispheres (up to 20°C in temperature, 20–30% in pressure, 30–50 m/s in wind) imply that reference atmospheres such as CIRA should be complemented by southern hemisphere climatology.  相似文献   

3.
The Colorado State University sodium lidar, located in Fort Collins, CO (41N, 105W), is capable of both daytime and nighttime operations and has conducted a number of continuous multiple-day observational campaigns over the past few years. Three such campaigns, lasting between 80 and 90 h, were conducted during August 2002–2004 when mesospheric winds and temperature observations were collected simultaneously. These data were processed to extract the vertical structure and temporal evolution of the quasi-two-day wave, which was found to be significant in the power spectra. The quasi-two-day wave in temperature, zonal wind and meridional wind was analyzed for each year, indicating that the wave activity in 2003 was weaker than the other two years. Concurrent TIMED/SABER (2002–2004) and TIMED/TIDI observations (2004) in August were also processed. The SABER temperature shows a quasi-two-day wave with a dominant westward propagating zonal wavenumber four (s = −4) component in 2002 and 2004 but not in 2003. Analysis of the TIDI winds in August 2004 also indicates significant quasi-two-day wave activity, with the zonal wavenumber three and four components of comparable strength. The results of this coordinated ground-based lidar and TIMED satellite observations during August are presented. The possible influence of quasi-biennial oscillation on the inter-annual variability of the quasi-two-day wave is investigated.  相似文献   

4.
Earlier latitudinal distribution models of zonal winds were developed mainly along the 80°W meridian [1, 2]. In this paper an attempt is made to take into account longitudinal differences in zonal and meridional wind distributions. These are considerable in winter prediods.  相似文献   

5.
New meteor radar (MR) horizontal wind data obtained during 2015–2018 at Kazan (56°N, 49°E) are presented. The measurements were carried out with a state-of-the-art SKiYMET meteor radar. Monthly mean vertical profiles of zonal and meridional components of the prevailing wind speeds, also amplitudes and phases of the components of diurnal (DT) and semidiurnal tide (SDT) winds are displayed as contour plots for a mean calendar year over the four recent years and compared with distributions of these parameters provided by the previous multiyear (1986–2002) meteor radar (MR) measurements at Kazan and by the recent HWM07 empirical model. The analysis shows that the SKiYMET zonal and meridional prevailing wind speeds are generally in good agreement, sharing the same seasonal features, with the earlier MR seasonal winds. Comparisons with the HWM07 model are not favourable: eastward solstitial cells as modelled are significantly larger, >30?m/s compared to 15–20?m/s. Also, reversal lines are too variable with height, and the positions of modelled cells (positive and negative) are unlike those of either MRs at Kazan or other MLT radars. Both MR systems provide the large SDT amplitudes, approximately 30?m/s and vertical wavelengths, approximately 55?km, for both components at middle latitudes in winter. They also show the well known strong SDT September feature (heights 85–100?km, the vertical wavelength ~55–60?km), and the weak summer SDT for 80–91?km. HWM07 shows unrealistic amplitudes and phases above 90?km by height and month: minimal amplitudes in equinoxes and no September feature.The weak DT of middle to high latitudes provide similar amplitude and phase structures from both MRs, 1986–2002 and 2015–2017: largest amplitudes (10–12 or 8–10?m/s) for the evanescent meridional tide in summer, peaking in late July; weakest (0–2, 2–4?m/s) at 80 to 92–96?km, when the tide is vertically propagating (January, February, November, December) with a vertical wavelength near 40?km. Again, HWM07 differs in amplitude and phase structures: showing peak amplitudes in equinoxes: April, 15?m/s at 88?km; October, 21?m/s at 89?km.Coupling of the MR wind parameters with the ERA5 wind parameters is studied for a case in 2016. It is shown that the prevailing winds and DT amplitudes and phases of both datasets can be simply linked together, but that the ERA5 SDT amplitudes are significantly underestimated at the top model levels of the ERA5 reanalysis project.  相似文献   

6.
Plasma transport is very important for understanding the space-time variations of the ionosphere. Therefore, following a resolution of URSI Subcommission G4, an effort is made to create a computer code describing the main results of investigations the ionospheric drift which were not considered in IRI-1979.

The experimental data from 23 stations in the Northern Hemisphere were obtained between 1957 and 1970. The worldwide coverage in geographic latitude is 7°N to 71°N (7.5° to 64.1° geomagnetic) and O° to 131°E geographic longitude.

We have developed appropriate procedure which allow us to infer from these data the main parameters of the global ionospheric motions at E- and F-region levels.

An algorithm for computing the zonal and meridional drift components VX, VY can be found in IRI-1990.

The last version of the computer programm called DRIFT which does the test calculation of Ionospheric Drifts Global Model whith printing the tables at the Epson printer is written in Turbo ascal for the IBM PC AT 286/287 compatible computers. Program code (execute module) is about 25 Kbyte. Data files are about 10 Kbyte.

E- and F-region horizontal ionospheric irregularities drift data, worldwide obtained from 1957 to 1970 by D1 and D3 methods, are statistically analysed and a computer code for the average velocity variations in latitude and local time for some solar activity levels is constructed. The PC program DRIFT allows to determine zonal and meridional drift velocities of ionospheric irregularities at the lower (90 < h < = 140 km) and upper (h > 140 km) ionosphere.

The main block of the program DRIFT is the procedure DRIRR for calculating VX and VY for a period (P), geomagnetic (geographic) latitude (FI) and local time (LT) to be specified.

The example of the program DRIFT calculation for F-region (REG=2) and for the whole period of observations (P=1) is in Table. VX > 0 to east, VY > 0 to north. FI is geomagnetic latitude.  相似文献   


7.
In the 95km height region of the atmosphere, ground-based techniques made an important contribution to the CIRA 72 [1] wind model. Recent wind measurements from a partial reflection experiment at 44S covering one and a half years are presented and compared with CIRA 72. The zonal wind component compares favourably, although the measured values are more easterly above 80km in autumn and winter; a feature of the autumn winds is a temporary easterly reversal above 90km. Winter mesospheric winds can be very disturbed. The summer mesosphere easterly maximum appears earlier in the season and at a higher altitude than the model. A much poorer comparison is shown between the measured meridional wind component and the 1969 model of Groves [2].  相似文献   

8.
MF雷达是中层大气风场及低电离层电子密度观测的重要手段. 简要介绍了新建昆明MF雷达设备的工作原理、结构及工作模式, 并对观测结果进行初步分析. 对2009年1月观测数据的分析表明, 该月纬向风场最大可达80 m/s, 经向风场则较小, 一般不超过40 m/s, 且二者均呈现一定波动性. 相应的LS谱及谐波拟合分析表明,周日潮汐是80~100 km高度大气风场的主要扰动成分, 其振幅随高度改变, 相位向下传播, 且周日潮汐经向分量相位超前于纬向分量相位. 此外, 分析了MF雷达白天的电子密度观测结果, 并与IRI2000进行比较, 发现两者在变化趋势上有非常好的一致性, 但雷达观测结果小于IRI2000给出的参考值.   相似文献   

9.
The diurnal variation of the mid-latitude upper thermosphere zonal winds during equinoxes has been studied using data recently generated from CHAMP measurements from 2002 to 2004 using an iterative algorithm. The wind data was separated into two geomagnetic activity levels, representing high geomagnetic activity level (Ap > 8) and low geomagnetic activity level (Ap ? 8). The data were further separated into two solar flux levels; with F10.7 > 140 for high and F10.7 ? 140 for low. Geomagnetic activity is a correlator just as significant as solar activity. The response of mid-latitude thermospheric zonal winds to increases in geomagnetic disturbances and solar flux is evident. With increase in geomagnetic activity, midday to midnight winds are generally less eastward and generally more westward after the about midnight transitions. The results show that east west transitions generally occurred about midnight hours for all the situations analyzed. The west to east transition occurs from 1400–1500 MLT. Enhanced westward averaged zonal wind speeds going above 150 ms−1 are observed in the north hemisphere mid-latitude about sunrise hours (∼0700–1100 MLT). Nighttime winds in the north hemisphere are in good agreement with previous single station ground observations over Millstone Hill. Improved ground observations and multi satellite observations from space will greatly improve temporal coverage of the Earth’s thermosphere.  相似文献   

10.
利用中国岢岚站(38.7°N,111.6°W)法布里-珀罗干涉仪2013年7月至2014年11月的水平风场数据,对87,97,250km风场长期变化和行星波特征进行了研究.通过分析年振荡(AO)和半年振荡(SAO)振幅相位,将午夜风场与HWM07数据对比发现:87km和97km处FPI纬向风变化趋势与HWM07相近,而经向风相位落后于HWM07,从振幅上看,HWM07振幅偏大;250km处风场月变化大,FPI与HWM07差异大,HWM07模式的准确性需进一步考虑太阳活动和行星际磁场的影响.利用Lomb-Scargle功率谱以及最小二乘谐波拟合提取了三个高度的行星波振幅,其特征表明87km和97km处纬向风16日波秋季及冬春季活动强,而6.5日波最强振幅出现在春季和秋季,在中间层顶附近两种行星波活动均较弱;250km处经向行星波活动略强于纬向,经向风不同周期带的行星波最强振幅主要出现在5-9月,与电离层f0F2振荡特性的研究结果一致.   相似文献   

11.
Between November 6 and December 1, 1980, a series of rocket observations obtained from two sites in northern Scandinavia as part of the Energy Budget Campaign indicated that significant vertical and temporal changes in the wind structure were present and were noted to coincide with different geomagnetic conditions, i.e., quiet and enhanced. This series of observations represents for the first time the largest amount of data ever gathered at high latitudes over such a short interval of time. It is observed that prior to November 16, the meridional wind component above 60 kilometers was found to be positive (southerly) while the magnitude of the zonal wind component increased with altitude. After November 16 the meridional component became negative (northerly) and the magnitude of the zonal wind component was noted to decrease with altitude. Time-sections of the perturbations of the zonal wind show the presence of vertically propagating waves which suggest gravity wave activity. These waves increase in wavelength from 3–4 kilometers near 40 kilometers to over 12 kilometers near 80 kilometers. The observational techniques employed at Andoya, Norway, and ESRANGE in Sweden, consisted of chaff foil, chemical trails, inflatable spheres, and parachutes.  相似文献   

12.
A total of 146 meteorological rocket flights applying the ‘falling sphere’ technique are used to obtain horizontal winds in the mesosphere at polar latitudes, namely at the Andøya Rocket Range (69°N, 125 flights), at Spitsbergen (78°N, 10 flights), and at Rothera (68°S, 11 January flights only). Nearly all flights took place around noon or midnight, i.e., in the same phase of the semidiurnal tide. Meridional winds at 69°N show a clear diurnal tidal variation which is not observed in the zonal winds. The zonal wind climatology shows a transition from summer to winter conditions with the zero wind line propagating upward from 40 km (end of August) to 80 km (end of September). Zonal winds are smaller at Spitsbergen compared to Andøya which is in line with a common angular velocity at both stations. Meridional winds at noon are of similar magnitude at all three stations and are directed towards the north and south pole, respectively. Horizontal and meridional winds generally agree with empirical models, except for the zonal winds at Antarctica which are similar to the NH, whereas there is a significant SH/NH difference in CIRA-1986.  相似文献   

13.
A predictability of the stratospheric zonal winds above 38 km during the turnaround is an essential parameter for planning of the high-altitude scientific balloon flights. This information is more relevant in the case of Hyderabad balloon facility which is closer to equator and has much more unstable wind reversal patterns which appears to have changed enormously during the last decade probably in correlation with the global warming. With a majority of our flights reaching the altitudes of 38–42 km and the requirement of long float durations, a prior knowledge of wind pattern during the summer and winter turnaround seasons is highly desirable. Furthermore, the flight operation corridor for balloon flights from Hyderabad is limited to 400 km and though in the west direction there are flat lands, in all other three directions, the landscape is dotted by water bodies, reserve forests and hilly terrain, and therefore need of such a data is essential. In order to establish the climatology of the stratospheric winds and study their inter-annual variability over Hyderabad for the turnaround periods, we have made a detailed analysis of the United Kingdom Meteorological office data between 2000 and 2007, to derive average wind parameters (magnitude, direction) at different ceiling altitudes above 38 km. These results can be used only as general trend of stratospheric wind and should not be the limitation of the UKMO Data.  相似文献   

14.
利用Aura卫星资料计算全球中层大气背景风场   总被引:3,自引:3,他引:3  
利用2005年第二代地球观测卫星系统(EOS)的Aura卫星上MLS观测的压强、温度、密度等数据,推算出全球中层大气的平均背景风场,分析了中层大气风场随时间和高度变化的特点.与武汉流星雷达及澳大利亚Adelaide台站观测的比较结果显示,用Aura数据推算出来的风场与实际观测比较符合.与HWM-93模式的比较显示,Aura风场随时间和空间变化的总体趋势与HWM-93基本吻合.特别是在80km以下的高度范围内Aura数据与HWM-93数据符合得比较好;在80 km以上的高度,Aura所算得的风值与HWM-93风值的差别逐渐增大,Aura风值普遍比HWM-93的要大.   相似文献   

15.
As part of an ongoing effort to understand the migrating diurnal tide generated by the NCAR Whole Atmosphere Community Climate Model, version 3 (WACCM3), we compare the WACCM3 migrating diurnal tide in the horizontal wind and temperature fields to similar results from the Global Scale Wave Model (GSWM). The WACCM3 diurnal tidal wind fields are also compared to tropical radar measurements at Kauai (22°N, 200.2°E) and Rarotonga (21.3°S, 199.7°E). The large-scale features of the WACCM3 results, such as the global spatial structure and the semiannual amplitude variation are in general agreement with past tidal studies; however, several differences do exist. WACCM3 exhibits a much higher degree of hemispheric asymmetry, lower overall amplitudes around the equinoxes, and peaks which are more confined in latitude when compared with the GSWM. Factors which may contribute to such differences between WACCM3 and GSWM are the solar heating profiles from ozone and water vapor, dissipation, and the zonal mean zonal winds. We find that the internally generated heating in WACCM3 and eddy dissipation values are both smaller than the values specified in the GSWM; the eddy dissipation fields and zonal mean zonal winds of the two models also display measurable differences in spatial structure. Comparisons with radar data show several differences in spatial and seasonal structure. In particular, the diurnal tide zonal winds in WACCM3 above Kauai are considerably larger in amplitude than those observed in the radar data, due to contributions from nonmigrating tidal components including wave numbers eastward 1 through 3, westward 2, and stationary components, which interfere constructively with the migrating component around equinox in WACCM3.  相似文献   

16.
Hornet ( , Hymenoptera: Vespinae) workers, queens and males, aged 0–24 hours (i.e. juveniles) and 24 hours and more (i.e. adults) were tested for their responses to changes in the direction of the gravitational force while placed on a flat surface gradually tilted between 0.5° and 180°. The tests were run on non-blind and blind hornets, at temperatures ranging between 18°C and 35°C, in daylight as well as in the dark. Up to 18 hours of age, negative phototaxis prevailed among the hornets, which displayed a clear preference for remaining in the dark regardless of the geotropic position. Between 18–24 hours of age, there was gradual appearance of a sensitivity to change in the geotropic position. Above 24 hr of age, the hornets became sensitive to changes in their declinations, with workers becoming sensitive at a 3–5° declination, queens at 4–5° and males at a declination of 8–19° from the horizontal. Hornet response takes the form of an upward climb, to the highest point of the test surface. Such response required a temperature exceeding 24.8–25°C for workers, 23.2°C for queens and 20.8–21°C for males.  相似文献   

17.
New results from Pioneer Orbiter observations indicate a continued vortex organization of the cloud level atmosphere in either hemisphere, centered over respective poles. Significant changes in the magnitude of the cloud level zonal circulation over a period of several years have been detected. A strong signature of the solar tidal circulation has been detected in the atmospheric circulation with the lowest speeds occurring in equatorial latitudes about 20° upstream of the sub-solar point. Finally, a solar-locked persistent spatial structure has been discovered in the variance of the ultraviolet brightness measured from brightness normalized images of Venus. Vega balloons (drifting at about 53 km altitude near 7°N and 7°S latitudes) have also provided some unique observations of atmospheric circulation, significant among them being the strong vertical motions, the zonality of their drift speeds as well as a significant temperature difference between the two balloons. The temperature difference which amounts to 6.5°K on average is currently being interpreted as a temperature variation with longitude or time.

Diagnostic modelling efforts towards simulating the atmospheric circulation on Venus are continuing and have provided some clues about the processes that maintain them but have not yet been successful in explaining the superrotation of the atmosphere.

Knowledge of the Martian atmospheric dynamics on the other hand is still limited by lack of adequate observations. Numerical modelling of the Martian atmosphere continues to provide most of the information about the atmospheric circulation. The situation regarding the paucity of observations should improve with the completion of the proposed Mars Observer mission. The low circular polar orbit planned provides an excellent opportunity to study the Martian atmosphere.  相似文献   


18.
基于WACCM+DART(Whole Atmosphere Community Climate Model,Data Assimilation Research Test-Bed)临近空间资料同化预报系统,以2016年2月的一次平流层爆发性增温(SSW)事件为例,开展了临近空间SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)和MLS(Microwave Limb Sounder)温度观测资料集合滤波同化试验.结果表明:同化SABER和MLS温度观测资料可显著降低WACCM模式在中间层和平流层中上部(0.001~10hPa)大气温度场的预报误差,改善CR试验在SSW发生时中间层变冷现象偏强、纬向风场首次发生反转的层次偏低以及增温恢复阶段0.1~10hPa的东风层提前消退、纬向风速偏大、平流层顶位置偏高等现象.基于ERA5(The Fifth Generation of ECMWF Reanalyses)再分析资料的检验表明:同化SABER和MLS温度资料明显有利于减小北半球高纬度地区(60°-90°N)平流层中上层和下中间层(0.1~14hPa)纬向风场以及平流层和中间层中下层(0.01~100hPa)温度场的分析误差;同化低层大气观测也有利于减小0.1~14hPa纬向风场和0.01~100hPa温度场的分析误差,但是不如同化SABER和MLS温度资料对临近空间纬向风场和温度场分析误差的改善效果显著.   相似文献   

19.
Daily UK Met Office stratospheric assimilated data for the Northern and Southern Hemispheres, accumulated for the period from 2004 to 2012 and pressure range of 1000–0.1 hPa, are used in this paper. The paper presents and thoroughly discusses spatial–temporal distributions of stationary planetary wave (SPW) amplitudes and phases, calculated on the basis of geopotential height, temperature, zonal and meridional wind data for zonal wave numbers 1 and 2 (SPW1 and SPW2). The climatological planetary wave amplitudes and phases are calculated by extracting waves from three types of data: daily, monthly mean and climatological monthly mean. It has been established that magnitude of amplitudes and height-latitude distribution of amplitudes of SPW1 and SPW2 depend on data processing method for all parameters. It has also been established that height-latitude distribution amplitudes and phases significantly differ for geopotential height, temperature, zonal and meridional wind and depend on wave number and hemisphere. However, height-latitude distributions of phases are little different from each other for the used methods of data processing.  相似文献   

20.
Monthly variations of averaged nighttime thermospheric winds have been investigated over Abuja, Nigeria (Geographic: 9.06°N, 7.5°E; Geomagnetic: 1.60°S). The reports are based on Fabry-Perot interferometer measurements of Doppler shifts and Doppler broadening of the 630.0 nm spectral emission. The results were obtained during a period of weak solar activity with the solar flux (F10.7) typically below 70 solar flux units. Inspection of the average monthly thermospheric winds from October 2017 to December 2017 found December meridional winds to be more equatorward than the October and November winds. Zonal winds are eastward with pre-midnight maximum speeds going above 100 m/s. Compared to Jicamarca zonal winds in the Peruvian sector for the same month of October, the magnitude of maximum Abuja zonal wind speed is weaker. We compare the observed diurnal variation with the recently updated Horizontal wind model (HWM 14). Most of the observational features of thermospheric wind diurnal variation are captured in the model variation. The HWM14 generally showed good agreement with the Abuja October and November zonal wind observations but overestimates the December meridional winds. Expected longer period analysis of the results from Abuja will stimulate a better understanding of wind climatology over the West African sector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号