共查询到20条相似文献,搜索用时 0 毫秒
1.
The rendezvous and docking mission is usually divided into several phases, and the mission planning is performed phase by phase. A new planning method using mixed integer nonlinear programming, which investigates single phase parameters and phase connecting parameters simultaneously, is proposed to improve the rendezvous mission’s overall performance. The design variables are composed of integers and continuous-valued numbers. The integer part consists of the parameters for station-keeping and sensor-switching, the number of maneuvers in each rendezvous phase and the number of repeating periods to start the rendezvous mission. The continuous part consists of the orbital transfer time and the station-keeping duration. The objective function is a combination of the propellant consumed, the sun angle which represents the power available, and the terminal precision of each rendezvous phase. The operational requirements for the spacecraft–ground communication, sun illumination and the sensor transition are considered. The simple genetic algorithm, which is a combination of the integer-coded and real-coded genetic algorithm, is chosen to obtain the optimal solution. A practical rendezvous mission planning problem is solved by the proposed method. The results show that the method proposed can solve the integral rendezvous mission planning problem effectively, and the solution obtained can satisfy the operational constraints and has a good overall performance. 相似文献
2.
针对高纬度地区地球同步轨道卫星存在覆盖盲区的问题,提出了一种长期悬停在极轴上空的极地悬停航天器轨道方案。基于日-地三体模型推导了连续推力控制下的极地悬停航天器轨道动力学模型,并针对悬停高度固定和自由两种模式分析了其推力需求特性和燃料消耗。结合工程实际,对采用电推进和太阳帆混合的极地悬停航天器进行了质量核算和寿命分析。结果表明:考虑电推进自身质量,自由悬停模式较固定悬停模式燃料消耗少,但有效载荷质量减小;太阳帆在当前的帆膜技术下不具有提高有效载荷质量的优势,但未来随着材料的发展太阳帆技术的优势会逐渐显现。文章提出的极地悬停航天器可实现对高纬度地区的连续和实时覆盖。 相似文献
3.
An intercept mission with nuclear explosives is the most effective of the practical mitigation options against the impact threat of near-Earth objects (NEOs) with a short warning time (e.g., much less than 10 years). The existing penetrated subsurface nuclear explosion technology limits the intercept velocity to less than approximately 300 m/s. Consequently, an innovative concept of blending a hypervelocity kinetic impactor with a subsurface nuclear explosion has been developed for optimal penetration, fragmentation, and dispersion of the target NEO. A proposed hypervelocity asteroid intercept vehicle (HAIV) consists of a kinetic-impact leader spacecraft and a follower spacecraft carrying nuclear explosives. This paper describes the conceptual development and design of a baseline HAIV system and its flight validation mission architecture for three mission cost classifications (e.g., $500 M, $1 B, and $1.5 B). 相似文献
4.
Only one of NASA's planetary science flight missions in the past 30 years has been led by a women scientist as Principal Investigator. The number of senior women in the field is small, but women are still underutilized, as seen by a cohort age analysis correlating with median ages for various key science roles. Worse, the more junior women are not joining missions as Co-Investigators and Participating Scientists at rates approaching their representation in the field of planetary science. In fact, they are underutilized in these roles not by a few percent, but by greater than a factor of two. The pipeline of women gaining mission experience today is increasing, but it is not keeping pace with the rate that women are now choosing to stay in the field for postdoctoral studies and beyond. The numbers definitively show for the first time that, for whatever reason, women are still underrepresented in mission leadership at NASA. 相似文献
5.
Principal Investigators of small and medium sized space and earth science missions face many challenges during formulation, design, development, integration and test, launch, and operations; these challenges may be more easily met by team leaders with prior mission experience. This paper reports the results of the first known demographic study of NASA's Principal-Investigator-led missions and makes recommendations for preparing additional space scientists to lead. The addition of a Deputy Principal Investigator to proposal teams could reduce the burden on the Principal Investigator and provide an opportunity for additional scientists to gain mission leadership experience useful on future missions. The pool of mission-knowledgeable scientists could further be expanded to include scientists earlier in their careers via carefully managed Participating Scientist Programs. Adding Deputy Principal Investigators and Participating Scientist Programs to missions as a matter of course would reinforce effective management practices, open the field of proposers, and provide concrete ways to mentor the next generation of Principal Investigators. 相似文献
6.
The PRISMA payload optomechanical design, a high performance instrument for a new hyperspectral mission 总被引:2,自引:0,他引:2
Demetrio Labate Massimo Ceccherini Andrea Cisbani Vittorio De Cosmo Claudio Galeazzi Lorenzo Giunti Mauro Melozzi Stefano Pieraccini Moreno Stagi 《Acta Astronautica》2009,65(9-10):1429-1436
PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyperspectral instrument is an advanced hyperspectral sensor including a panchromatic camera at medium resolution. The instrument is the focus of the new Earth observation mission that a consortium of Italian companies has started developing under contract of Italian Space Agency. Key features of the instrument are the very high requirement for signal-to-noise and the high quality of data that have to be provided. To meet these demanding figures the optical system has been based on a high transmittance optical system, including a single mirror telescope and two prism spectrometers based on an innovative concept to minimize number of optical elements, while high performance detectors have been chosen for the photon detection. To provide the required data quality for the entire mission lifetime an accurate calibration unit (radiometric and spectral) will be included in the instrument optomechanical assembly. The thermo-mechanical design of the instrument is based on innovative concepts, considering that the use of prism spectrometers implies a tight control of temperature variations to guarantee the stability of all instrument features once in orbit. The presented paper describes the concepts and design principle of the optomechanical assembly of the instrument, at the present status of development. 相似文献
7.
V.I. Prokhorenko 《Acta Astronautica》1983,10(7):499-503
Problems of situational investigations during the planning and control of the space experiment in the near-Earth space are considered in this paper. It gives the concept of the orbital torus and shows its application in various problems of situational investigations: the forecast of intersections of the orbit with the magnetopause and bow shock, regions of satellites radiovisibility from the ground observation post and others. 相似文献
8.
无人机任务规划系统研究及发展 总被引:2,自引:0,他引:2
无人机任务规划系统是指根据所要完成的任务、无人机的数量及任务载荷的不同,对各架无人机进行任务分配并通过航路规划技术制定飞行路线。首先介绍了无人机任务规划系统的基本功能及组成结构。然后,详细分析了任务规划系统的建模技术及其优化算法的研究现状。最后指出了讨论了无人机任务规划存在的问题,并阐述了无人机任务规划系统的发展趋势。 相似文献
9.
Jozef C. Van der Ha 《Acta Astronautica》1985,12(4):207-211
A simplified model for the orbital and relative motion of a tethered satellite system is presented. The tether acts as a light elastic string with small structural damping but without bending stiffness. Its mass is taken into account in the calculation of the total kinetic and potential energies of the tethered system. This formulation allows the inclusion of the complete gravity gradient influence on the dynamics of the system. The resulting three-dimensional motion is separated in the centre of mass orbital motion on the one hand and the relative motion of the end-bodies on the other. No restrictions on length of the tether or on mass ratio of the end-masses are imposed. It is found that the frequencies and amplitudes of the longitudinal tether oscillations are realistic as long as the tether mass is less than that of the subsatellite. 相似文献
10.
Hawkey A 《Journal of the British Interplanetary Society》2005,58(3-4):117-130
Evolving on Earth has made humans perfectly adapted, both physiologically and biomechanically, to its gravity and atmospheric conditions. Leaving the Earth and its protective environment, therefore, results in the degradation of a number of human systems. Long-duration stays on the International Space Station (ISS) are accompanied by significant effects on crew's cardiovascular, vestibular and musculoskeletal systems. Bone loss and muscle atrophy are experienced at a rate of 1-3% and 5% per month respectively, while VO2 (oxygen consumption) measurements are reduced by approximately 25% after a few weeks in space. If these figures are simply extrapolated, a future human mission to Mars will be seriously jeopardised and crews may find they cross the threshold of bone and muscle loss and aerobic fitness--ultimately with them being unable to return to Earth. When arriving on Mars, considerable biomechanical alterations will also occur. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, while stride length, stride time and airborne time will all increase. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk. 相似文献
11.
The European Space Agency (ESA) has decided to carry out a fly-by mission to the comet Halley. The spacecraft will be launched by an ARIANE II and intercept the retrograde Halley orbit on 13 March, 1986. One group of experiments is designed to obtain data on size, mass and composition of the dust in the cometary tail. Because of the very high relative velocity during fly-by (69 km/s) laboratory experiments are necessary to develop and calibrate the experiments. These experiments are presently under way in the laboratory of the Lehrstuhl für Raumfahrttechnik of the Technische Universität München. First results have been obtained for both the Dust Impact Detection System (DIDSY) and the P?articulate Impact Analyzer (PIA). These results are compared with the theoretical models for hypervelocity impact craters. The agreement is good at impact velocities around 15 km/s. 相似文献
12.
A Space Debris Impact Risk Analysis Tool (SDIRAT) was developed and implemented to assess the orbital debris impact risk on a specified target in Earth orbit, in terms of flux, relative velocity, impact velocity, direction of the incoming particles, debris mass and diameter. Based on a deterministic approach, SDIRAT uses a realistic orbital debris population where each representative particle is identified by its rectangular coordinates (position and velocity) at a reference epoch. Using this information, some geometrical algorithms were developed and implemented to evaluate the contribution of each particle to the incoming flux. The position of the particle with respect to a specified target drives the selection criteria to reject, or select, it as a possible projectile. On the other hand, the relative velocity vector can be used to estimate the impact direction of the incoming flux. SDIRAT was conceived as a general tool for a variety of scenarios, such as low circular and elliptical orbits, up to the geosynchronous ring. This paper presents some examples of possible applications, including the computation of the incoming debris flux on SAX (low Earth orbit), SIRIO (geosynchronous orbit) and the IRIS upper stage (elliptical orbit). Other applications assess the impact risk for the Soviet Radar Ocean Reconnaissance Satellites Cosmos 1900 and Cosmos 1932. 相似文献
13.
利用既有的Barror中间轨道计算方法中的奇点处理方法,对有些特殊轨道不能处理,用本文所述方法不但能处理各种卫星轨道问题,也能处理各种导弹轨道的特殊计算问题。 相似文献
14.
Given the diversity of missions it has accomplished and the myriad of adaptations it has undergone, the US Space Shuttle is widely regarded as a highly flexible space vehicle. With the Shuttle’s upcoming 2011 retirement, it is instructive to survey the history of this vehicle’s flexibility for the insights it can provide to the design and characterization of flexibility in future space systems. Data are presented on the evolution of mission requirements over time for 120 missions performed by the Space Shuttle over a period of some 27 years. Distinct trends in the time domain – as well as their causes – are identified and discussed, and early manifest plans from 1982 serve as a confirmation that these trends were not originally anticipated. Eight examples are then presented of engineering modifications that allowed the Shuttle to adapt and accommodate these requirement changes. Several additional instances of Shuttle flexibility are explored, such as post-Columbia disaster modification, upgrade programs and derived vehicles, and one case in which flexibility was inhibited by an early design decision. 相似文献
15.
Orbital debris environment models are essential in predicting the characteristics of the entire debris environment, especially for altitude and size regimes where measurement data is sparse. Most models are also used to assess mission collision risk. The IDES (Integrated Debris Evolution Suite) simulation model has recently been upgraded by including a new sodium–potassium liquid coolant droplet source model and a new historical launch database. These and other features of IDES are described in detail. The accuracy of the IDES model is evaluated over a wide range of debris sizes by comparing model predictions to three major types of debris measurement data in low Earth orbit. For the large-size debris population, the model is compared with the spatial density distribution of the United States (US) Space Command Catalog. A radar simulation model is employed to predict the detection rates of mid-size debris in the field of view of the US Haystack radar. Finally, the small-size impact flux relative to a surface of the retrieved Long Duration Exposure Facility (LDEF) spacecraft is predicted. At sub-millimetre sizes, the model currently under-predicts the debris environment encountered at low altitudes by approximately an order of magnitude. This is because other small-size debris sources, such as paint flakes have not yet been characterised. Due to the model enhancements, IDES exhibits good accuracy when predicting the debris environment at decimetre and centimetre sizes. Therefore, the validated initial conditions and the high fidelity future traffic model enables IDES to make long-term debris environment projections with more confidence. 相似文献
16.
平动点轨道的动力学与控制研究综述 总被引:5,自引:0,他引:5
平动点轨道在深空探测领域具有重要的应用价值,引起了国内外航天界的密切关注.详细介绍了平动点轨道的发展历史,并深入剖析平动点附近的相空间结构和同\异宿连接的力学机制;论述Halo轨道转移方式的实现、轨道维持策略及平动点轨道的姿态描述,然后讨论了实现深空组网的平动点星座建立.平动点具有十分丰富的内容,在轨道动力学其他领域亦有扩展,细致分析了平动点理论在地月转移、太阳帆轨平动点以及近地编队飞行等方面的应用. 相似文献
17.
E. V. Babkin M. Yu. Belyaev N. I. Efimov V. V. Sazonov V. M. Stazhkov 《Cosmic Research》2001,39(1):23-37
The results of determining the rotational motion of the Mir orbital station are presented for four long segments of its unmanned uncontrolled flight in 1999–2000. The determination was carried out using the data of onboard measurements of the Earth's magnetic field intensity. These data, taken for a time interval of several hours, were jointly processed by the least squares method with the help of integration of the equations of station motion relative to its center of mass. As a result of this processing, the initial conditions of motion and the parameters of the mathematical model used were evaluated. The technique of processing is verified using the telemetry data on angular velocity of the station and its attitude parameters. Two types of motion were applied on the investigated segments. One of them (three segments) presents a rotation around the axis of the minimum moment of inertia. This axis executes small oscillations with respect to a normal to the orbit plane. Such a motion was used for the first time on domestic manned orbital complexes. The second type of motion begins with a biaxial rotation which, in a few weeks, goes over into a motion very similar to the rotation around the normal to the orbit plane, but around the axis of the maximum moment of inertia. 相似文献
18.
4月2日是美国轨道科学公司成立25周年纪念日。这家公司为此在其设在弗吉尼亚州杜勒斯的总部和其它地点举行了一系列庆祝活动。公司官员感谢其员工和用户使该公司能取得迄今的成就.并感谢他们为公司未来取得更大的成就提供了机会。
轨道科学公司1982年创立之初只有3人.当年没有收入.但目前已发展到3000人,2007年年收入预计将达到近9亿美元。在过去25年中,该公司累计创收约87亿美元.为其员工队伍创造了超过4,5万人一年的高技术就业机会。自成立以来,该公司一直是航天工业界最活跃的火箭和空间系统研制生产商之一.其经营成果包括销售、设计和建造了772件火箭和空间系统.其中包括已完工并交付的583件运载火箭、导弹、卫星和其它空间系统以及正在根据合同研制生产、将在2007。2012年间交付给用户的189件卫星、火箭和相关系统。[编者按] 相似文献
19.
对美国空基拦截器用轨控发动机组(MMA)的点火器性能特点、结构与材料等,进行了较全面的分析和评估,而且分析了该点火器在我国研制的可能性.开展此项研究,对我国战略防御武器系统的研究、设计和制造,将会产生较大的促进作用. 相似文献
20.
依据国外任务规划研究现状,结合未来作战实际需求,开展巡航导弹三维实时任务规划方法的研究.首先分析了任务规划技术研究的现状和存在的问题,其次给出实时任务规划的关键技术及主要参数,最后提出了实时任务规划的几种需求实现方法和优化方法. 相似文献