首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蒋明  喻明艳  王进祥  李葆华 《宇航学报》2007,28(4):1020-1024
在星图识别领域三角形算法得到了广泛的应用,但是在星对角距很小的情况下,其识别率严重降低。字符匹配算法可以解决这个问题,但是它无法识别由于相机在拍摄瞬问的平移和旋转而产生位移的星图。为了克服这一缺陷,提出了一种有效的星图识别算法,该算法在生成导航星数据库时以一些一定范围内的亮星为中心,把整个天球分为很多个四方形区域,然后根据被拍摄星图的特点从这些四方形区域内选取子区域参与星图识别。仿真结果表明该算法不但继承了字符匹配算法的优点,而且对星图位移有很强的鲁棒性。  相似文献   

2.
基于交叠视场亮度优选算法的导航星库构建方法   总被引:1,自引:0,他引:1       下载免费PDF全文
星敏感器导航星库直接影响星图识别效率和姿态解算精度。分析了参与姿态解算的星颗数和亮度对姿态精度影响,在此基础上,提出了一种基于交叠视场亮度优选算法的星敏感器导航星库构建方法。将精度较高的Hipparcos星表作为基础星表,分析了星等、双星、自行、变星等对姿态精度的影响,将星库筛选成一个备选星库,生成覆盖全天球的交叠视场。每个拥有较多星的视场,都按照亮度优先原则从视场内的扇形区域中选择导航星,从而得到分布均匀的导航星库。结果表明:该方法能有效减小星敏感器导航星库规模,实现导航星在全天球和局部天区的均匀分布。  相似文献   

3.
Plávalová E 《Astrobiology》2012,12(4):361-369
When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.  相似文献   

4.
Coupled radiative-convective/photochemical modeling was performed for Earth-like planets orbiting different types of stars (the Sun as a G2V, an F2V, and a K2V star). O(2) concentrations between 1 and 10(-5) times the present atmospheric level (PAL) were simulated. The results were used to calculate visible/near-IR and thermal-IR spectra, along with surface UV fluxes and relative dose rates for erythema and DNA damage. For the spectral resolution and sensitivity currently planned for the first generation of terrestrial planet detection and characterization missions, we find that O(2) should be observable remotely in the visible for atmospheres containing at least 10(-2) PAL of O(2). O(3) should be visible in the thermal-IR for atmospheres containing at least 10(-3) PAL of O(2). CH(4) is not expected to be observable in 1 PAL O(2) atmospheres like that of modern Earth, but it might be observable at thermal-IR wavelengths in "mid-Proterozoic-type" atmospheres containing approximately 10(-1) PAL of O(2). Thus, the simultaneous detection of both O(3) and CH(4) - considered to be a reliable indication of life - is within the realm of possibility. High-O(2) planets orbiting K2V and F2V stars are both better protected from surface UV radiation than is modern Earth. For the F2V case the high intrinsic UV luminosity of the star is more than offset by the much thicker ozone layer. At O(2) levels below approximately 10(-2) PAL, planets around all three types of stars are subject to high surface UV fluxes, with the F2V planet exhibiting the most biologically dangerous radiation environment. Thus, while advanced life is theoretically possible on high-O(2) planets around F stars, it is not obvious that it would evolve as it did on Earth.  相似文献   

5.
As photosynthesis on Earth produces the primary signatures of life that can be detected astronomically at the global scale, a strong focus of the search for extrasolar life will be photosynthesis, particularly photosynthesis that has evolved with a different parent star. We take previously simulated planetary atmospheric compositions for Earth-like planets around observed F2V and K2V, modeled M1V and M5V stars, and around the active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as well as very low O2 content in case anoxygenic photosynthesis dominates. With a line-by-line radiative transfer model, we calculate the incident spectral photon flux densities at the surface of the planet and under water. We identify bands of available photosynthetically relevant radiation and find that photosynthetic pigments on planets around F2V stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in the near-infrared, in bands at 0.93-1.1 microm, 1.1-1.4 microm, 1.5-1.8 microm, and 1.8-2.5 microm. However, underwater organisms will be restricted to wavelengths shorter than 1.4 microm and more likely below 1.1 microm. M star planets without oxygenic photosynthesis will have photon fluxes above 1.6 microm curtailed by methane. Longer-wavelength, multi-photo-system series would reduce the quantum yield but could allow for oxygenic photosystems at longer wavelengths. A wavelength of 1.1 microm is a possible upper cutoff for electronic transitions versus only vibrational energy; however, this cutoff is not strict, since such energetics depend on molecular configuration. M star planets could be a half to a tenth as productive as Earth in the visible, but exceed Earth if useful photons extend to 1.1 microm for anoxygenic photosynthesis. Under water, organisms would still be able to survive ultraviolet flares from young M stars and acquire adequate light for growth.  相似文献   

6.
提出一种基于GPU的恒星检索并行算法,解决大视场下星表检索在仿真应用中效率不高的问题。首先使用经纬度分区法将星表划分为星区存储,然后在可快速查询的分区星表上,提出构造球面三角形法精确求出探测视场覆盖的星区,以有效减小搜索范围。最后,采用计算统一设备架构(CUDA)计算平台,将并行的视场内恒星检索过程放入GPU下进行并行加速。实验结果表明,与面向CPU的实现相比,所提算法获得数十倍的加速比,并且在大视场、宽星等域下将检索时间控制在毫秒级别,满足了实时仿真要求。  相似文献   

7.
Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth.  相似文献   

8.
Stable, hydrogen-burning, M dwarf stars make up about 75% of all stars in the Galaxy. They are extremely long-lived, and because they are much smaller in mass than the Sun (between 0.5 and 0.08 M(Sun)), their temperature and stellar luminosity are low and peaked in the red. We have re-examined what is known at present about the potential for a terrestrial planet forming within, or migrating into, the classic liquid-surface-water habitable zone close to an M dwarf star. Observations of protoplanetary disks suggest that planet-building materials are common around M dwarfs, but N-body simulations differ in their estimations of the likelihood of potentially habitable, wet planets that reside within their habitable zones, which are only about one-fifth to 1/50th of the width of that for a G star. Particularly in light of the claimed detection of the planets with masses as small as 5.5 and 7.5 M(Earth) orbiting M stars, there seems no reason to exclude the possibility of terrestrial planets. Tidally locked synchronous rotation within the narrow habitable zone does not necessarily lead to atmospheric collapse, and active stellar flaring may not be as much of an evolutionarily disadvantageous factor as has previously been supposed. We conclude that M dwarf stars may indeed be viable hosts for planets on which the origin and evolution of life can occur. A number of planetary processes such as cessation of geothermal activity or thermal and nonthermal atmospheric loss processes may limit the duration of planetary habitability to periods far shorter than the extreme lifetime of the M dwarf star. Nevertheless, it makes sense to include M dwarf stars in programs that seek to find habitable worlds and evidence of life. This paper presents the summary conclusions of an interdisciplinary workshop (http://mstars.seti.org) sponsored by the NASA Astrobiology Institute and convened at the SETI Institute.  相似文献   

9.
M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.  相似文献   

10.
Low mass M- and K-type stars are much more numerous in the solar neighborhood than solar-like G-type stars. Therefore, some of them may appear as interesting candidates for the target star lists of terrestrial exoplanet (i.e., planets with mass, radius, and internal parameters identical to Earth) search programs like Darwin (ESA) or the Terrestrial Planet Finder Coronagraph/Inferometer (NASA). The higher level of stellar activity of low mass M stars, as compared to solar-like G stars, as well as the closer orbital distances of their habitable zones (HZs), means that terrestrial-type exoplanets within HZs of these stars are more influenced by stellar activity than one would expect for a planet in an HZ of a solar-like star. Here we examine the influences of stellar coronal mass ejection (CME) activity on planetary environments and the role CMEs may play in the definition of habitability criterion for the terrestrial type exoplanets near M stars. We pay attention to the fact that exoplanets within HZs that are in close proximity to low mass M stars may become tidally locked, which, in turn, can result in relatively weak intrinsic planetary magnetic moments. Taking into account existing observational data and models that involve the Sun and related hypothetical parameters of extrasolar CMEs (density, velocity, size, and occurrence rate), we show that Earth-like exoplanets within close-in HZs should experience a continuous CME exposure over long periods of time. This fact, together with small magnetic moments of tidally locked exoplanets, may result in little or no magnetospheric protection of planetary atmospheres from a dense flow of CME plasma. Magnetospheric standoff distances of weakly magnetized Earth-like exoplanets at orbital distances 相似文献   

11.
基于天文角度观测的机载惯性/天文组合滤波算法研究   总被引:2,自引:0,他引:2  
针对采用天文/惯性位置组合时对导航选星有特殊要求,提出了基于天文角度观测信息的机载惯性/天文组合滤波方案及算法.对基于天文角度观测的INS/CNS组合导航系统的原理进行了充分阐述,分析并建立了基于单星或多星观测条件下的组合导航系统线性化量测方程,并针对角度观测时高度通道不可观的特点,增加了气压高度输出为系统的观测量,并在此基础上设计了组合滤波器算法.最后进行了组合导航系统仿真,并通过协方差分析的方法对比分析了单星和双星观测条件下的滤波性能.仿真结果表明,即使是在单星观测条件下,组合导航系统也能获得较好的定位精度;若观测星数增多,则可以大大提高系统性能,表明该组合导航系统设计方案是成功可行的.  相似文献   

12.
倪娜  洪娟  赵友  孟倩  王汀 《宇航学报》2014,35(11):1277-1283
提出了一种基于位并行法近似串匹配的星图识别新方法。 首先为选取的导航星建立相应的模式串,然后利用改进的并行化动态规划矩阵算法(BPM)为观测星图中的星体寻找匹配的导航模式,并验证匹配结果的正确性,完成星图识别。仿真试验结果表明,本方法算法简便、导航星库存储容量小,抗干扰能力强,有很好的鲁棒性。  相似文献   

13.
The deep space 1 extended mission   总被引:2,自引:0,他引:2  
The primary mission of Deep Space 1 (DS1), the first flight of the New Millennium program, completed successfully in September 1999, having exceeded its objectives of testing new, high-risk technologies important for future space and Earth science missions. DS1 is now in its extended mission, with plans to take advantage of the advanced technologies, including solar electric propulsion, to conduct an encounter with comet 19P/Borrelly in September 2001. During the extended mission, the spacecraft's commercial star tracker failed; this critical loss prevented the spacecraft from achieving three-axis attitude control or knowledge. A two-phase approach to recovering the mission was undertaken. The first involved devising a new method of pointing the high-gain antenna to Earth using the radio signal received at the Deep Space Network as an indicator of spacecraft attitude. The second was the development of new flight software that allowed the spacecraft to return to three-axis operation without substantial ground assistance. The principal new feature of this software is the use of the science camera as an attitude sensor. The differences between the science camera and the star tracker have important implications not only for the design of the new software but also for the methods of operating the spacecraft and conducting the mission. The ambitious rescue was fully successful, and the extended mission is back on track.  相似文献   

14.
The changing view of planets orbiting low mass stars, M stars, as potentially hospitable worlds for life and its remote detection was motivated by several factors, including the demonstration of viable atmospheres and oceans on tidally locked planets, normal incidence of dust disks, including debris disks, detection of planets with masses in the 5-20 M() range, and predictions of unusually strong spectral biosignatures. We present a critical discussion of M star properties that are relevant for the long- and short-term thermal, dynamical, geological, and environmental stability of conventional liquid water habitable zone (HZ) M star planets, and the advantages and disadvantages of M stars as targets in searches for terrestrial HZ planets using various detection techniques. Biological viability seems supported by unmatched very long-term stability conferred by tidal locking, small HZ size, an apparent short-fall of gas giant planet perturbers, immunity to large astrosphere compressions, and several other factors, assuming incidence and evolutionary rate of life benefit from lack of variability. Tectonic regulation of climate and dynamo generation of a protective magnetic field, especially for a planet in synchronous rotation, are important unresolved questions that must await improved geodynamic models, though they both probably impose constraints on the planet mass. M star HZ terrestrial planets must survive a number of early trials in order to enjoy their many Gyr of stability. Their formation may be jeopardized by an insufficient initial disk supply of solids, resulting in the formation of objects too small and/or dry for habitability. The small empirical gas giant fraction for M stars reduces the risk of formation suppression or orbit disruption from either migrating or nonmigrating giant planets, but effects of perturbations from lower mass planets in these systems are uncertain. During the first approximately 1 Gyr, atmospheric retention is at peril because of intense and frequent stellar flares and sporadic energetic particle events, and impact erosion, both enhanced, the former dramatically, for M star HZ semimajor axes. Loss of atmosphere by interactions with energetic particles is likely unless the planetary magnetic moment is sufficiently large. For the smallest stellar masses a period of high planetary surface temperature, while the parent star approaches the main sequence, must be endured. The formation and retention of a thick atmosphere and a strong magnetic field as buffers for a sufficiently massive planet emerge as prerequisites for an M star planet to enter a long period of stability with its habitability intact. However, the star will then be subjected to short-term fluctuations with consequences including frequent unpredictable variation in atmospheric chemistry and surficial radiation field. After a review of evidence concerning disks and planets associated with M stars, we evaluate M stars as targets for future HZ planet search programs. Strong advantages of M stars for most approaches to HZ detection are offset by their faintness, leading to severe constraints due to accessible sample size, stellar crowding (transits), or angular size of the HZ (direct imaging). Gravitational lensing is unlikely to detect HZ M star planets because the HZ size decreases with mass faster than the Einstein ring size to which the method is sensitive. M star Earth-twin planets are predicted to exhibit surprisingly strong bands of nitrous oxide, methyl chloride, and methane, and work on signatures for other climate categories is summarized. The rest of the paper is devoted to an examination of evidence and implications of the unusual radiation and particle environments for atmospheric chemistry and surface radiation doses, and is summarized in the Synopsis. We conclude that attempts at remote sensing of biosignatures and nonbiological markers from M star planets are important, not as tests of any quantitative theories or rational arguments, but instead because they offer an inspection of the residues from a Gyr-long biochemistry experiment in the presence of extreme environmental fluctuations. A detection or repeated nondetections could provide a unique opportunity to partially answer a fundamental and recurrent question about the relation between stability and complexity, one that is not addressed by remote detection from a planet orbiting a solar-like star, and can only be studied on Earth using restricted microbial systems in serial evolution experiments or in artificial life simulations. This proposal requires a planet that has retained its atmosphere and a water supply. The discussion given here suggests that observations of M star exoplanets can decide this latter question with only slight modifications to plans already in place for direct imaging terrestrial exoplanet missions.  相似文献   

15.
本文主要讨论用于自旋静止气象卫星大回路成像试验的太阳、地球、卫星相关模拟基准源。本基准源是用于测量自旋静止气象卫星星上同步控制系统的性能,检查云图传输系统的同步控制精度,并作为地面测试卫星云图传输性能的基准设备。本文论述了其基本原量,介绍了用数字信号处理器(DSP)集成电路TMS320C25实现的方法,并分析了成像精度。  相似文献   

16.
A Monte Carlo computer model of extra-solar planetary formation and evolution, which includes the planetary geochemical carbon cycle, is presented. The results of a run of one million galactic disc stars are shown where the aim was to assess the possible abundance of both biocompatible and habitable planets. (Biocompatible planets are defined as worlds where the long-term presence of surface liquid water provides environmental conditions suitable for the origin and evolution of life. Habitable planets are those worlds with more specifically Earthlike conditions). The model gives an estimate of 1 biocompatible planet per 39 stars, with the subset of habitable planets being much rarer at 1 such planet per 413 stars. The nearest biocompatible planet may thus lie approximately 14 LY distant and the nearest habitable planet approximately 31 LY away. If planets form in multiple star systems then the above planet/star ratios may be more than doubled. By applying the results to stars in the solar neighbourhood, it is possible to identify 28 stars at distances of < 22 LY with a non-zero probability of possessing a biocompatible planet.  相似文献   

17.
宁晓琳  王龙华  白鑫贝  房建成 《宇航学报》2012,33(11):1601-1610
利用星光折射间接敏感地平的卫星自主导航方案具有导航精度高、自主性强的特点,是一种极具应用潜力的自主导航方案。在基于星光折射的自主导航方案中,折射星的准确识别与折射角的精确获取是实现高精度导航的基础。提出了一种基于双星敏感器,利用连续高度星图模拟与匹配技术实现高精度折射星识别和折射角获取的方法,并在此基础上设计了一种新颖的基于星光折射的卫星自主导航系统方案。同时,为了验证该方案的可行性,设计了相关的折射星仿真程序,以轨道高度为686km的对地观测卫星为例进行计算机仿真验证,结果表明在星敏感器精度为3″时,该导航系统平均位置误差约为145m,最大位置误差不超过400m。  相似文献   

18.
偏移矩阵是指由于传感器与卫星平台之间的安装偏差而导致的传感器坐标系与卫星平台坐标系之间的旋转矩阵 ,用于校正传感器与卫星平台坐标系之间不重合而导致的成像偏差。针对CBERS卫星数据处理系统只能使用星上下传姿态和星历数据进行预处理 ,而这些姿态和星历数据也可能存在系统误差的情况 ,我们把预处理图像所有引入误差 ,包括系统安装误差、姿态和星历数据误差、地面处理模型误差等 ,综合导致的成像偏差 ,归结为一个旋转矩阵来校正 ,该旋转矩阵定义为偏移矩阵。当系统成像存在一个较大的系统误差时 ,把该偏移矩阵代入几何校正处理模型中 ,可以得到很好的校正效果。文章方法在CBERS卫星的在轨测试中得到实施并取得较好的效果 ,增加偏移矩阵校正后 ,图像预处理几何定位精度得到显著提高  相似文献   

19.
Coupled one-dimensional photochemical-climate calculations have been performed for hypothetical Earth-like planets around M dwarfs. Visible/near-infrared and thermal-infrared synthetic spectra of these planets were generated to determine which biosignature gases might be observed by a future, space-based telescope. Our star sample included two observed active M dwarfs-AD Leo and GJ 643-and three quiescent model stars. The spectral distribution of these stars in the ultraviolet generates a different photochemistry on these planets. As a result, the biogenic gases CH4, N2O, and CH3Cl have substantially longer lifetimes and higher mixing ratios than on Earth, making them potentially observable by space-based telescopes. On the active M-star planets, an ozone layer similar to Earth's was developed that resulted in a spectroscopic signature comparable to the terrestrial one. The simultaneous detection of O2 (or O3) and a reduced gas in a planet's atmosphere has been suggested as strong evidence for life. Planets circling M stars may be good locations to search for such evidence.  相似文献   

20.
星图匹配制导中的关键技术   总被引:5,自引:0,他引:5  
为了提高新一代弹道导弹的快速、机动反击能力和射击精度,采用星光,惯性组合制导足最佳的选择。本论文给出了基于双星敏感器的、星图匹配制导系统的关键技术。提出了根据弹道设计导航星表.极大地简化了弹载星表;提出了一种适用于星光制导的凸多边形箅法,合理地减少了匹配的星对角距数目。这两项技术保证了星图匹配制导技术的实用性。提出了一种分离初始定位、定向误差及平台漂移误差方法。采用凸多边形的星图识别算法可同时获得多颗星的瞬时位置,结合恒星在像平面的位置可解算导弹在赤道惯性系和发射点惯性系的三轴姿态,最后,给出了导弹初始定位、定向误差的数学表达式。仿真结果表明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号