首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Hydrogen is one of the most promising fuels for the airbreathing hypersonic propulsion system, and it attracts an increasing attention of the researchers worldwide. In this study, a typical hydrogen-fueled supersonic combustor was investigated numerically, and the predicted results were compared with the available experimental data in the open literature. Two different chemical reaction mechanisms were employed to evaluate their effects on the combustion of H2–O2, namely the two-step and the seven-step mechanisms, and the vitiation effect was analyzed by varying the H2O mass fraction. The obtained results show that the predicted mole fraction profiles for different components show very good agreement with the available experimental data under the supersonic mixing and combustion conditions, and the chemical reaction mechanism has only a slight impact on the overall performance of the turbulent diffusion combustion. The simple mechanism of H2–O2 can be employed to evaluate the performance of the combustor in order to reduce the computational cost. The H2O flow vitiation makes a great difference to the combustion of H2–O2, and there is an optimal H2O mass fraction existing to enhance the intensity of the turbulent combustion. In the range considered in this paper, its optimal value is 0.15. The initiated location of the reaction appears far away from the bottom wall with the increase of the H2O mass fraction, and the H2O flow vitiation quickens the transition from subsonic to supersonic mode at the exit of the combustor.  相似文献   

2.
Rothkaehl  H.  Stanisławska  I.  Blecki  J.  Zbyszynski  Z. 《Cosmic Research》2003,41(4):340-344
The polar cusp being a region of the free access of the solar wind into the inner magnetosphere is also the site of turbulent plasma flow. The cusp area at low altitudes acts like a focus of a variety type of instability and disturbances from different regions of the Earth. Daily f 0 F2 frequencies are discussed regarding the cusp position. The high time resolution wave measurements together with electron and ion energetic spectra measurements registered on the board the Freja satellite and Magion-3 and the electron density at the peak of f 0 F2 layers collected from ground-based ionosonde measurements were used to study the response of ionospheric plasma within the cusp–cleft region to the strong geomagnetic storm. In this paper we present the response of the ionospheric plasma to the disturbed conditions seen in the topside wave measurements and in the ionospheric characteristics maps obtained from the ground-based VI network. The need of the cusp feature model for radio communication purposes is advocated.  相似文献   

3.
The results of a numerical simulation of such parameters of the topside ionosphere as concentration N e and temperature T e of electrons, and concentration n(H+) and fluxes along the magnetic field lines Φ(H+) of H+ ions at an altitude of ~2000 km for the conditions of the August 11, 1999 solar eclipse are presented. The calculations were performed using the Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere of the Earth (GSM TIP). It is shown that during the eclipse, in addition to a region of decreased values of T e in the Northern Hemisphere and in the magnetically conjugate region in the Southern Hemisphere, regions of electron heating emerge in both hemispheres. Simultaneously, an extended region of decreased values of N e comes into existence and moves behind the Moon’s shadow. Regions with decreased (down to ~30%) and enhanced (up to ~50%) concentrations of H+ ions are detected in the global distribution of these ions.  相似文献   

4.
In this paper, we analyzed the thermal and energy characteristics of the plasma components observed during the magnetic dipolarizations in the near tail by the Cluster satellites. It was previously found that the first dipolarization the ratio of proton and electron temperatures (T p/T e) was ~6–7. At the time of the observation of the first dipolarization front T p/T e decreases by up to ~3–4. The minimum value T p/T e (~2.0) is observed behind the front during the turbulent dipolarization phase. Decreases in T p/T e observed at this time are associated with an increase in T e, whereas the proton temperature either decreases or remains unchanged. Decreases of the value T p/T e during the magnetic dipolarizations coincide with increase in wave activity in the wide frequency band up to electron gyrofrequency f ce. High-frequency modes can resonantly interact with electrons causing their heating. The acceleration of ions with different masses up to energies of several hundred kiloelectron-volts is also observed during dipolarizations. In this case, the index of the energy spectrum decreases (a fraction of energetic ions increases) during the enhancement of low-frequency electromagnetic fluctuations at frequencies that correspond to the gyrofrequency of this ion component. Thus, we can conclude that the processes of the interaction between waves and particles play an important role in increasing the energy of plasma particles during magnetic dipolarizations.  相似文献   

5.
6.
The energy dependence of a fraction of ring current protons of ionospheric origin is calculated using the AMPTE/CCE data for a typical strong magnetic storm (max|D st | ≈ 120 nT). It is shown that this fraction monotonically decreases from ~ 83 to 25–30% with an increase in proton energy from 5 to 315 keV at L = 6–7 (L is the McIlwain parameter) and is 30–40% at energy 40–50 keV corresponding to the maximum of proton energy density at L = 6–7. It is demonstrated that the core of the ring current (L = 3.7–4.7) was enriched by solar protons with E ≈ 10–200 keV during the active phase of the storm (the maximum effect is reached at E ≈ 20–50 keV).  相似文献   

7.
A brief review is given of contemporary approaches to solving the problem of medium-term forecast of the velocity of quasi-stationary solar wind (SW) and of the intensity of geomagnetic disturbances caused by it. At the present time, two promising models of calculating the velocity of quasi-stationary SW at the Earth’s orbit are realized. One model is the semi-empirical model of Wang-Sheeley-Arge (WSA) which allows one to calculate the dependence V(t) of SW velocity at the Earth’s orbit using measured values of the photospheric magnetic field. This model is based on calculation of the local divergence f S of magnetic field lines. The second model is semi-empirical model by Eselevich-Fainshtein-Rudenko (EFR). It is based on calculation in a potential approximation of the area of foot points on the solar surface of open magnetic tubes (sources of fast quasistationary SW). The new Bd-technology is used in these calculations, allowing one to calculate instantaneous distributions of the magnetic field above the entire visible surface of the Sun. Using predicted V(t) profiles, one can in EFR model calculate also the intensity of geomagnetic disturbances caused by quasi-stationary SW. This intensity is expressed through the K p index. In this paper the EFR model is discussed in detail. Some examples of epignosis and real forecast of V(t) and K p (t) are discussed. A comparison of the results of applying these two models for the SW velocity forecasting is presented.  相似文献   

8.
This paper models the combustion of a turbulent homogeneous mixture of propane and air within a duct having a stationary one-dimensional mean flow. The Bray-Moss model is applied to the closure of the chemical production terms, using a probability density function (pdf) of the temperature which is chosen as the characteristic variable. Under the conditions chosen for the study, chemical kinetic factors are important and the conventional assumption, that heat release is controlled by turbulent mixing, is not valid. The chemical model of Edelman and Fortune for the combustion of hydrocarbons is used and simplifying assumptions are made which reduce the systems of unknowns to that of the temperature alone. This leads to the introduction of two chemical production terms which are defined respectively in a “delay zone”, where the heat release is modest, and a “combustion zone”. The required equations for the Favre-averaged temperature, turbulence kinetic energy and the mean square fluctuation of the temperature are solved numerically. In the delay zone, a comparison is made between a second order Borghi type closure and the pdf closure. Good agreement is found in the case of relatively small turbulence intensity. It is shown that the pdf formulation does not require the two zones to be spatially distinct. Differing chemical source terms can be discriminated instantaneously by the reaction progress variable and contributions to the average production terms appropriately apportioned by its pdf. Predictions are made of the profiles of mean temperature and mean square fluctuation under different initial turbulence levels.  相似文献   

9.
Rusanov  A. A.  Petrukovich  A. A. 《Cosmic Research》2004,42(4):354-361
We investigated the dependence of the geomagnetic activity index K p on the velocity and density of the solar wind and the intensity of the interplanetary magnetic field (IMF). A three-layer neural network was used to create the model. The degree of the influence of input parameters on K p was determined by the value of the mean and root-mean square deviations of the model index values from the real indices. It was found that the largest contribution to the K p index is provided by the Z component of the IMF, the velocity and density of the solar wind measured with a delay from 0 to 3 h relative to the studied value of K p, and the previous value of the index itself. For the model with such a set of input parameters, the correlation coefficient between model and real series is ±0.89. The analysis of deviations from the real values of K p showed that high indices are simulated worse than low indices. In order to solve this problem the data distribution was reduced to a uniform distribution over K p, and this considerably decreased the standard deviations for large values of K p.  相似文献   

10.
《Acta Astronautica》1986,13(8):481-489
This paper develops a new semianalytic theory by generalization of the Method of Averaging (MoA) and the Stroboscopic Method (SM). Unlike the traditional development of the MoA, which must use the mean anomaly, this new approach can treat any orbital anomaly. In particular, a more geometrically significant position variable, the true anomaly, is considered here. This extension of the traditional methods presents significant analytical and numerical advantages. For instance, the averaging of the rate functions does not require the usual change of variable to true anomaly and the evaluation of the short-period terms does not involve the solution of the transcendental Kepler equation. The new set of differential equations is completely independent of the satellite anomalistic motion, thus allowing the propagation of the state with a relatively large (up to a few days) integration stepsize. This feature effectively increases the flexibility of the SM, which normally restricts the propagation of the state to integral multiples fo the orbital period. The transformations that relate this new set of averaged rate functions and short-period terms to the traditional ones are derived in a series of analytic expressions called Equivalence Relations. These relations allow a successful comparison of this theory with the classical results found in the literature. Further changes of independent variables to “mean time” and “mean orbit number” naturally lead to difference equations and multirevolution integration algorithms.The principles of this theory are applied to the equations that describe the motion of an earth satellite subjected to gravity (J2, J3 and J4 harmonics) and drag perturbations. The atmospheric model includes the effects of solar and geomagnetic activity, the diurnal, semiannual and seasonal-latitudinal cycles of density variations and the flattening and rotation of the atmosphere. The short-period oscillatory terms and the averaged differential equations associated with these perturbations are developed into completely analytical expressions. This feature provides insights into the dynamics of the satellite and simplifies the numerics of the prediction process. Numerical simulation of this new set of differential equations and comparison with the propagation of the unaveraged (osculating) set of differential equations show that the predictor proposed in this paper significantly increases computation speed without loss in accuracy.This theory has been used to predict the orbital lifetime of actual satellites and to conduct a parametric analysis of satellite orbital lifetime.  相似文献   

11.
Perturbation theory is applied to the Vinti problem—motion about an oblate spheroid—to include the gravitational effects of the sun and moon. The problem is formulated using the extended phase space method which introduces a new independent variable similar to the true anomaly. The disturbing Hamiltonian H1 for third bodies is of order J22 (second order) and the final goal is a theory including second order short and long period terms and third order secular terms. The current paper however carries the development only to the second order in the secular terms and the first order in the periodic terms. Problems of including the higher orders are discussed. Therefore, in the development of H1 all terms of order 10?9 or larger are retained. The lunar emphemeris retains terms to e2 in the lunar eccentricity. The perturbation analysis is carried out by means of Lie series and is developed through the first order only which is consistent with the final accuracy desired. The generating function W1 is obtained and separated into the long period, short period and secular terms. From W1 the coordinates are defined from the Lie series by means of a transformation equation. These coordinates are non-singular for small eccentricity and inclination. Because of the complexity of the equations all algebraic computations were accomplished by means of a computerized Poisson series manipulator developed at the Naval Research Laboratory.  相似文献   

12.
刘景源 《宇航学报》2012,33(12):1719-1726
为模拟高速可压缩湍流问题,对剪应力输运(SST)湍流模型进行了可压缩修正。数值格式采用改进的总变差减小(TVD)格式,并对湍流模型的负值强制项进行了隠式处理。在此基础上计算了绕平板以及基本无分离和具有分离流动结构的压缩拐角的高超声速流动。计算结果和实验数据及半经验公式的对比表明:SST湍流模型的可压缩影响项为密度加权脉动速度的平均与压力梯度的标量乘积。经可压缩修正后的SST湍流模型与原模型及其它可压缩修正模型相比,所计算的壁面压力、摩擦阻力和壁面热流分布具有更高的精度。  相似文献   

13.
14.
The different types of convective phenomena which may occur during the dendritic solidification of metallic alloys are discussed from an order of magnitude analysis. Bulk thermal convection and/or interdendritic solutal convection have to be considered according to the values of the experimental data. Scaling laws for the solute boundary layer resulting from bulk thermal convection have already been derived. It is shown here that the interdendritic flow depends on a solutal Grashof number Gr based on the horizontal density gradient and a characteristic length Ls which is of the order of the liquid channels width. For Gr < 1, which is generally verified in practical cases, the interdendritic flow velocity Ur is proportional to the Grashof number. This a priori law compares favorably with the results of horizontal solidification experiments where the mean interdendritic flow velocity has been estimated from the resulting measured macrosegregation. In these experiments, as well as for most horizontal dendritic solidifications of metallic alloys at 1 g, the ratio UrR (R is the growth rate) is of order one. In order to cancel the interdendritic flow effects, this ratio has to be lowered by one order of magnitude. According to our analysis, this can be obtained by performing the experiments either at a slightly reduced g level (~10?1 g), or at 1 g in a vertical stable configuration with a sufficiently low residual horizontal thermal gradient.  相似文献   

15.
16.
Using satellite data obtained near the equatorial plane during 12 magnetic storms with amplitudes from ?61 down to ?422 nT, the dependences of maximum in L-profile of pressure (L m) of the ring current (RC) on the current value of D st are constructed, and their analytical approximations are derived. It is established that function L m(D st ) is steeper on the phase of recovery than during the storm’s main phase. The form of the outer edge of experimental radial profiles of RC pressure is studied, and it is demonstrated to correspond to exponential growth of the total energy of RC particles on a given L shell with decreasing L. It is shown that during the storms’ main phase the ratio of plasma and magnetic field pressures at the RC maximum does not practically depend on the storm strength and L m value. This fact reflects resistance of the Earth’s magnetic field to RC expansion, and testifies that during storms the possibilities of injection to small L are limited for RC particles. During the storms’ recovery phase this ratio quickly increases with increasing L m, which reflects an increased fraction of plasma in the total pressure balance. It is demonstrated that function L m(D st ) is derived for the main phase of storms from the equations of drift motion of RC ions in electrical and magnetic fields, reflecting the dipole character of magnetic field and scale invariance of the pattern of particle convection near the RC maximum. For the recovery phase it is obtained from the Dessler-Parker-Sckopke relationship. The obtained regularities allow one to judge about the radial profile of RC pressure from ground-based magnetic measurements (data on the D st variation).  相似文献   

17.
We have performed spectral processing of the data of experiments on radio sounding of circumsolar plasma by coherent S- and X-band signals from the spacecraft Ulysses, Mars Express, Rosetta, and Venus Express carried out from 1991 to 2009. The experiments were realized in the mode of coherent response, when a signal stabilized by the hydrogen standard is transmitted from the ground station to a spacecraft, received by the onboard systems, and retransmitted to the Earth with conserved coherence. Thus, the signal sounding the coronal plasma passes twice through the medium: on the propagation path ground station — spacecraft and on the same path in the opposite direction. The spectra of frequency fluctuations in both the bands are obtained and, using them, the radial dependences of fluctuation intensities are found, which can be approximated by a power law. It is shown that the ratio of intensities of frequency fluctuations in the S- and X-bands is comparable with the theoretical value and characterizes the degree of correlation of irregularities of the electron density along the propagation path ground station — spacecraft and back. Analysis of the correlation of frequency fluctuations on the two paths allows one to get a lower estimate of the outer scale of the circumsolar plasma turbulence. For heliocentric distances R = 10 solar radii (R S ) the outer scale is larger than 0.25R S .  相似文献   

18.
A new single range controller design approach for use with nonlinear liquid propellant engines (LPE) is developed. The approach is based on a describing function model of the nonlinear LPE coupled with the application of the H control theory. The approach is applicable to nonlinear LPEs of a general nature without any restrictions on nonlinearity type, number of nonlinear terms, nonlinearity arrangement, or system order. The approach is applied to an existing nonlinear LPE, and the results are compared with those obtained with an alternative method that was previously reported in the open literature.  相似文献   

19.
《Acta Astronautica》2014,93(2):463-475
The influences of miscellaneous combustor structures for solid fuel scramjet combustion on the performance are investigated, including a detailed interaction analysis between shocks/waves and combustion. Hydroxyl-terminated polybutadiene is chosen as the solid fuel with the non-premixed equilibrium probability density function combustion model. The results show combustion enhancement when structure of combustor is modified. The radical emphasis is to examine the sensitivity of the properties due to variations on the length-to-depth ratio of cavity, aft wall angle, and offset ratio. It is noted that there is an appropriate structure of cavity (L/D=4, θ=45°, and Dd/Du=1.25–1.5) regarding the combustion efficiency, total pressure loss and specific impulse. The observation of function for combustor components provides instructional insight into the design considerations for a combustor of a solid-fuel scramjet.  相似文献   

20.
The threshold values of the annual fluence of atomic oxygen (F AO ≈ 1020 cm?2), as well as the ratios of the energy-flux density of vacuum ultraviolet radiation of the solar spectrum to the flux density of atomic oxygen (Φ ν AO ≈ 8 × 10?15 mJ) were determined, which are characterized the influence of the synergistic effect on the mass loss of Kapton-H, PM-A, and PM-1E polyimide films, which are spacecraft materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号