首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atmospheric photoelectrons have been observed well above the ionosphere of Mars by the ASPERA-3 ELS instrument on Mars Express. To systematically interpret these observations, field lines from two global MHD simulations were analyzed for connectivity to the dayside ionosphere (allowing photoelectron escape). It is found that there is a hollow cylinder behind the planet from 1–2 R M away from the Mars-Sun line that has a high probability of containing magnetic field lines with connectivity to the dayside ionosphere. These results are in complete agreement with the ELS statistics. It is concluded that the high-altitude photoelectrons are the result of direct magnetic connectivity to the dayside at the moment of the measurement, and no extra trapping or bouncing mechanisms are needed to explain the data.  相似文献   

2.
We have studied the loss of O+ and O+ 2 ions at Mars with a numerical model. In our quasi-neutral hybrid model ions (H+, He++, O+, O+ 2) are treated as particles while electrons form a massless charge-neutralising fluid. The employed model version does not include the Martian magnetic field resulting from the crustal magnetic anomalies. In this study we focus the Martian nightside where the ASPERA instrument on the Phobos-2 spacecraft and recently the ASPERA-3 instruments on the Mars Express spacecraft have measured the proprieties of escaping atomic and molecular ions, in particular O+ and O+ 2 ions. We study the ion velocity distribution and how the escaping planetary ions are distributed in the tail. We also create similar types of energy-spectrograms from the simulation as were obtained from ASPERA-3 ion measurements. We found that the properties of the simulated escaping planetary ions have many qualitative and quantitative similarities with the observations made by ASPERA instruments. The general agreement with the observations suggest that acceleration of the planetary ions by the convective electric field associated with the flowing plasma is the key acceleration mechanism for the escaping ions observed at Mars.  相似文献   

3.
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

4.
A total of about of 400 orbits during the first year of the ASPERA-3 operation onboard the Mars Express spacecraft were analyzed to obtain a statistical pattern of the main plasma domains in the Martian space environment. The environment is controlled by the direct interaction between the solar wind and the planetary exosphere/ionosphere which results in the formation of the magnetospheric cavity. Ionospheric plasma was traced by the characteristic “spectral lines” of photoelectrons that make it possible to detect an ionospheric component even far from the planet. Plasma of solar wind and planetary origin was distinguished by the ion mass spectrometry. Several different regions, namely, boundary layer/mantle, plasma sheet, region with ionospheric photoelectrons, ray-like structures near the wake boundary were identified. Upstream parameters like solar wind ram pressure and the direction of the interplanetary electric field were inferred as proxy from the Mars Global Surveyor magnetic field data at a reference point of the magnetic pile up region in the northern dayside hemisphere. It is shown that morphology and dynamics of the main plasma domains and their boundaries are governed by these factors as well as by local crustal magnetizations which add complexity and variability to the plasma and magnetic field environment.  相似文献   

5.
We examine the magnetic field in the martian magnetosheath due to solar wind draping. Mars Global Surveyor provided 3-D vector magnetic field measurements at a large range of altitudes, local times, and solar zenith angles as the spacecraft orbit evolved. We choose orbits with very clean signatures of draping to establish the nominal morphology of the magnetic field lines at local times of near-subsolar and near-terminator. Next, using a compilation of data from Mars Global Surveyor, we determine the average magnetic field morphology in the martian magnetosheath due to the solar wind interaction. The topology of the field is as expected from previous observations and predictions. The magnetic field magnitude peaks at low altitude and noon magnetic local time and decreases away from that point. The magnetic field has an inclination from the local horizontal of 5.6° on average in the dayside magnetosheath and 12.5° on the nightside. The inclination angle is closest to zero at noon magnetic local time and low altitude. It increases both upward and to later local times. The magnetic field in the induced magnetotail flares out from the Mars—Sun direction by 21°. Finally, we compare the observations to gasdynamic model predictions and find that the shocked solar wind flow in the martian magnetosheath can be treated as a gasdynamic flow with the magnetic pileup boundary as the inner boundary to the flow.  相似文献   

6.
We present measurements of energetic hydrogen and oxygen atoms (ENAs) on the nightside of Mars detected by the neutral particle detector (NPD) of ASPERA-3 on Mars Express. We focus on the observations for which the field-of-view of NPD was directed at the nightside of Mars or at the region around the limb, thus monitoring the flow of ENAs towards the nightside of the planet. We derive energy spectra and total fluxes, and have compiled maps of hydrogen ENA outflow. The hydrogen ENA intensities reach 105 cm−2 sr−1 s−1, but no oxygen ENA signals above the detection threshold of 104 cm−2 sr−1 s−1 are observed. These intensities are considerably lower than most theoretical predictions. We explain the discrepancy as due to an overestimation of the charge-exchange processes in the models for which too high an exospheric density was assumed. Recent UV limb emission measurements (Galli et al., this issue) point to a hydrogen exobase density of 1010 m−3 and a very hot hydrogen component, whereas the models were based on a hydrogen exobase density of 1012 m−3 and a temperature of 200 K predicted by Krasnopolsky and Gladstone (1996). Finally, we estimate the global atmospheric loss rate of hydrogen and oxygen due to the production of ENAs.  相似文献   

7.
Bow Shock and Upstream Phenomena at Mars   总被引:1,自引:0,他引:1  
Mazelle  C.  Winterhalter  D.  Sauer  K.  Trotignon  J.G.  Acuña  M.H.  Baumgärtel  K.  Bertucci  C.  Brain  D.A.  Brecht  S.H.  Delva  M.  Dubinin  E.  Øieroset  M.  Slavin  J. 《Space Science Reviews》2004,111(1-2):115-181
Mars Global Surveyor is the sixth spacecraft to return measurements of the Martian bow shock. The earlier missions were Mariner 4 (1964), Mars 2 and 3 (1972), Mars 5 (1975) and Phobos 2 (1989) (see reviews by Gringauz, 1981; Slavin and Holzer, 1982; Russell, 1985; Vaisberg, 1992a,b; Zakharov, 1992). Previous investigations of planetary bow shocks have established that their position, shape and jump conditions are functions of the upstream flow parameters and the nature of the solar wind — planet interaction (Spreiter and Stahara, 1980; Slavin et al., 1983; Russell, 1985). At Mars, however, the exact nature of the solar wind interaction was elusive due to the lack of low altitude plasma and magnetic field measurements (e.g., Axford, 1991). In fact our knowledge of the nature of the interaction of Mars with the solar wind was incomplete until the arrival of MGS and the acquisition of close-in magnetic field data (Acuña et al., 1998). As detailed by a series of review papers in this monograph, the Mars Global Surveyor (MGS) mission has now shown that the Mars environment is very complex with strong, highly structured crustal magnetic remnants in the southern hemisphere, while the northern hemisphere experiences the direct impingement of solar wind plasma. This review paper first presents a survey of the observations on the Martian bow shock and the upstream phenomena in the light of results from all the missions to date. It also discusses the kinetic properties of the Martian bow shock compared to the predictions of simulations studies. Then it examines the current status of understanding of these phenomena, including the possible sources of upstream low-frequency waves and the interpretations of localized disturbances in the upstream solar wind around Mars. Finally, it briefly discusses the open issues and questions that require further study.  相似文献   

8.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   

9.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   

10.
The acceleration of charged particles in the magnetic current sheets downstream from magnetic neutral lines is discussed and related to the plasma populations expected to be formed in a simple open model magnetosphere. A simple model of plasma acceleration in the dayside current sheet is set up, and it is shown that magnetospheric particles may take up a considerable fraction of the electromagnetic energy dissipated in the sheet even though they may represent only a small fraction of the total particle influx. The process should result in energetic ring current and ionospheric particles being found in boundary layers on either side of the magnetopause, and accelerated ionospheric particles in the plasma mantle. Acceleration of magnetosheath plasma in the dayside current sheet should result in enhanced flow speeds in these boundary layers, but the process may amount to little more than a return to the sheath plasma of energy previously extracted from it during its inflow on the dayside and stored in the compressed sheath field, due to the appreciable energy take-up from the current sheet by magnetospheric particles. The energy separation between ionospheric plasma and magnetosheath plasma on cusp field lines is shown to result in a spatial separation of polar wind and plasma mantle populations in the tail, the polar wind ions usually reaching out to only a few tens of R E down-tail such that they usually remain on closed field lines, forming a wedge-shaped region within the mantle shadow-zone. Polar wind ions are then convected back towards the Earth and thus their major sink is via the dayside current sheet rather than outflow into the tail. The major source for the plasmasheet depends upon the location of the neutral line, but mantle ions may usually be dominant. However, with a near-Earth neutral line during disturbed periods ionospheric plasma will be the sole ring-current source. Under usual conditions with a more distant neutral line the spatial separation of the two plasma sources in the tail may result in an energy separation in the inner ring current, with ionospheric particles dominant up to 2 to 20 keV and mantle ions dominant at higher energies. Formation of the plasmasheet is discussed, and it is shown that a layer of ions unidirectionally streaming towards the Earth should be formed on its outer boundary, due to current sheet acceleration of lobe particles and inward convection of the field lines. A similar process leads to earthward flows on the inner layer of the dayside cusp. Finally, the region tailward of the nightside neutral line is discussed and it is shown that a thin tailward flowing two-stream plasma band should be formed across the centre plane of the tail. The slow-speed stream corresponds to incoming lobe ions, the faster stream to the current sheet accelerated ions.  相似文献   

11.
The Neutral Particle Detector (NPD) of the ASPERA-3 experiment (Analyser of Space Plasmas and Energetic Atoms) on board the Mars Express (MEX) spacecraft observed an intense flux of H ENAs (energetic neutral atoms) with average energy of about 1.5 keV emitted anisotropically from the subsolar region of Mars. The NPD detected the ENA jet near the bow shock at radial distances of about 1 R M from the Martian surface as the spacecraft moved outbound, while the NPD continuously pointed towards the subsolar region. The jet intensity shows oscillative behavior. These intensity variations occur on two clearly distinguishable time scales. The majority of the identified events have an average oscillation period of about 50 sec. The second group consists of events with long-scale variations with a time scale of approximately 300 sec. The fast oscillations of the first group exhibit a periodic structure and are detected in every orbit, while the slow variations of the second group are identified in ∼40% of orbits. The intensity of the fast oscillations have a peak-to-valley ratio about 20 to 30% of the peak intensity. One of the possible mechanisms to explain fast oscillations is the formation of the low frequency ion waves at the subsolar region of Mars. Slow variations may be explained by either temporal variations in the ENA generation source or by a specific structure of the ENA generation source, in which hair-like ENA subjets can be present.  相似文献   

12.
Recent research into the effects of the interplanetary magnetic field (IMF) on the Earth's auroral oval and plasmapause are reviewed. While the IMF sector structure has been known for some time to produce asymmetries in polar-cap convection, recent work has shown these effects to extend into the dayside auroral oval. A restricted region of local times referred to as the convection throat is found to move to either side of the noon meridian in response to changes in the IMF B y component.The question of the entry of solar-wind plasma into the magnetosphere continues to be a prime area of research. While it is generally felt that magnetic merging must play some significant role, evidence continues to mount that it does not occur at the subsolar magnetopause, as previously supposed, and that other driving forces for antisunward convection must occur on closed field lines. A suggestion is made that many of the seemingly conflicting observations that have been made in the region of the dayside cusps can be explained if significant distortions of closed field lines near the dayside magnetopause are allowed and if closed and open field lines coexist in the cusp, particularly near the entry layer.Effects of the IMF on the nightside auroral oval and on the plasmapause stem chiefly from the expansion of the oval to lower latitudes which is produced by southward IMF components and from the impulsive substorm phenomena that become stronger and more probable with increasingly southward IMF.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

13.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   

14.
The mutual impedance experiment on GEOS-1 provides an original diagnostic of the thermal electron population. The electron density N e, and temperature T e, are derived from the plasma frequency and Debye length, the values of which determine the shape of the frequency dependent mutual impedance curves. The existing limits of the method are pointed out. They may be instrumental or arise from a lack of theoretical development, for instance when the steady magnetic field or the drift velocity of the plasma cannot be neglected. Nevertheless, first geophysical results have been derived, using measurements obtained on the dayside of the equatorial magnetosphere where most of the data enter within the above limits. In particular, we have drawn a map of the dayside magnetosphere, in terms of densities, Debye lengths, temperatures, at geocentric distances of 4 to 7 Earth radii. The conventional shape of the plasmasphere is recognized, but the temperatures obtained are lower than expected (2 eV at apogee, outside the plasmasphere). The influence of the magnetic activity on apogee measurements is reported: N e values and A m indices are shown to be correlated, but it is not the case for T e and A m. Finally, detailed T e and N e profiles are shown, and the presence of a plasmapause boundary is discussed.  相似文献   

15.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   

16.
Dynamics play an important role in defining the characteristics of the Venus ionosphere. The absence of a significant internal magnetic field at Venus allows the ionization to respond freely to gradients in the plasma pressure. The primary response to a gradient in plasma pressure is the nightward flow of the ionization away from a photoionization source on the dayside. The flow is approximately symmetric about the Sun-Venus axis and provides the source of O+ that maintains the nightside ionosphere during solar maximum. Modelling efforts have generally been successful in describing the average nightward ion velocity. Asymmetric and temporally-variable flow is measured, but is not well described by the models. Departures from axially-symmetric flow described in this paper include ionospheric superrotation at low altitudes and an enhanced flow at high altitude at the dawn terminator. Variability that is the result of changes in the ionopause height induced by changes in solar wind dynamic pressure is especially strong on the nightside. Ion flow to the nightside is also reduced during solar minimum because of a depressed ionopause.  相似文献   

17.
Vignes  D.  Acuña  M.H.  Connerney  J.E.P.  Crider  D.H.  Rème  H.  Mazelle  C. 《Space Science Reviews》2004,111(1-2):223-231
We report observations of magnetic fields amplitude, which consist of a series of individual spikes in the Martian atmosphere. A minimum variance analysis shows that these spikes form twisted cylindrical filaments. These small diameter magnetic filaments are commonly called magnetic flux ropes. We examine the global characteristics of magnetic flux ropes, which are observed on 5% of the elliptical orbits of Mars Global Surveyor. Flux ropes are more often observed in Venus' atmosphere (70% of the orbits). In this paper we report some of the global characteristics of the flux ropes identified in the Martian atmosphere. No flux ropes are observed in the southern hemisphere of Mars. Most of them occur at high solar zenith angles, close to the terminator plane, and at high latitude with altitudes below 400 km. The orientation of the flux ropes appears random while in the case of Venus the orientation is more horizontal near the terminator for altitudes greater than 200 km. We have identified fewer flux ropes for SZA between 40 to 60 deg and for SZA lower than 20 deg, like in the case of Venus (Elphic and Russell, 1983b). Statistically, Mars' ionosphere with SZA range between 40circ to 60circ is less magnetized than near the subsolar point. As the Martian ionosphere is quite often magnetized by the magnetic components of the crustal field, this crustal magnetic field seems to inhibit the flux ropes formation in the southern hemisphere. However, some orbits without crustal magnetic field, called magnetic cavities, were observed without flux ropes. So the flux ropes formation process seems to be uppressed by another factor, like the solar wind dynamic pressure for Venus (Krymskii and Breus, 1988).  相似文献   

18.
Chemistry,accretion, and evolution of Mars   总被引:1,自引:0,他引:1  
The high FeO concentrations measured by VIKING for the Martian soils correspond to all probability to a FeO-rich mantle. In general, the VIKING XRF-data indicate a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust.In recent years evidence has been collected which points towards Mars being the parent body of SNC-meteorites and, hence, these meteorites have become a valuable source of information about the chemistry of Mars. Using element correlations observed in SNC-meteorites and general cosmochemical constraints, it is possible to estimated the bulk composition of Mars. Normalized to Si and Cl, the mean abundance value for the elements Ga, Fe, Na, P, K, F, and Rb in the Martian mantle is found to be 0.35 and thus exceeds the terrestrial value by about a factor of two. Aside pressure effects and the H2O poverty, the high P and K content of the Martian mantle may lead to magmatic processes different from those on Earth.The composition of the Earth's mantle can successfully be described by a two component model. Component A: highly reduced and almost free of all elements more volatile than Na; component B: oxidized and containing all elements in Cl-abundances including volatile elements. The same two components can be used as building blocks for Mars, if one assumes that, contrary to the inhomogeneous accretion of the Earth, Mars accreted almost homogeneously. The striking depletion of all elements with chalcophile character indicates that chemical equilibrium between component A and B was achieved on Mars which lead to the formation of significant amounts of FeS which, on segregation, extracted the elements according to their sulphide-silicate partition coefficients. While for the Earth a mixing ratio AB = 8515 was derived, the Mars ratio of 6040 reflects the higher concentrations of moderately volatile elements like Na, K, and sulphur on Mars. A homogeneous accretion of Mars could also explain the obvious low abundances of water and primordial rare gases.  相似文献   

19.
Solar wind forcing of Mars and Venus results in outflow and escape of ionospheric ions. Observations show that the replenishment of ionospheric ions starts in the dayside at low altitudes (??300?C800 km), ions moving at a low velocity (5?C10 km/s) in the direction of the external/ magnetosheath flow. At high altitudes, in the inner magnetosheath and in the central tail, ions may be accelerated up to keV energies. However, the dominating energization and outflow process, applicable for the inner magnetosphere of Mars and Venus, leads to outflow at energies ??5?C20 eV. The aim of this overview is to analyze ion acceleration processes associated with the outflow and escape of ionospheric ions from Mars and Venus. Qualitatively, ion acceleration may be divided in two categories:
  1. Modest ion acceleration, leading to bulk outflow and/or return flow (circulation).
  2. Acceleration to well over escape velocity, up into the keV range.
In the first category we find a processes denoted ??planetary wind??, the result of e.g. ambipolar diffusion, wave enhanced planetary wind, and mass-loaded ion pickup. In the second category we find ion pickup, current sheet acceleration, wave acceleration, and parallel electric fields, the latter above Martian crustal magnetic field regions. Both categories involve mass loading. Highly mass-loaded ion energization may lead to a low-velocity bulk flow??A consequence of energy and momentum conservation. It is therefore not self-evident what group, or what processes are connected with the low-energy outflow of ionospheric ions from Mars. Experimental and theoretical findings on ionospheric ion acceleration and outflow from Mars and Venus are discussed in this report.  相似文献   

20.
Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with the rarity of carbonate deposits, and indicates surface waters with chemical features drastically different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The presence of sulfate minerals observed from orbit and in-situ via surface exploration within sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to environments indicated by clay minerals and localized carbonates that formed in surface and subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and summarized. Existing models of formation of sedimentary sulfate are discussed and related to weathering processes and chemical conditions of surface waters. We also review existing models of sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous sulfur into the exosphere and evaluate the mass transfers and speciation relationships between volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in atmospheric pressure is necessary to account for such a change in composition of volcanic gases. This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and long time scale cooling effects, remains controversial. However, the ancient wet and warm era on Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to volcanic SO2 degassing were most likely not in place at this time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号