首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
正人类已经发现多少系外行星?太阳系外行星(简称系外行星)泛指在太阳系以外的行星。历史上天文学家一般相信在太阳系以外存在着其他行星,然而它们的普遍程度和性质则是一个谜,直至上世纪90年代,人类才首次确认系外行星的存在。目前,没有人知道银河系中有多少行星,但天文学家认为,银河系里大约有百亿颗恒星,数千亿颗行星。因为系外行星比地球至少要大两倍,所以发现系外行星不是一件很难的事情。  相似文献   

2.
正开普勒空间望远镜发射升空之后没几个月,系统还处在适应摸索的阶段,一个偶然的机会,发现的闸门突然打开:望远镜第一次观测到了太阳系外与地球大小类似的一颗岩质行星。这颗系外行星被称为开普勒10b,具有高温、质量大的特点,它的出现揭开了系外行星发现的狂潮。在之后短短20年  相似文献   

3.
正ESA网站2018年3月20日报道,选定系外行星大气遥感红外大规模巡天(ARIEL)作为其宇宙憧憬(Cosmic Vision)计划的第四个中级科学任务。ARIEL将聚焦于系外行星的性质,研究行星形成和生命出现的条件。ARIEL任务计划于2028年由ESA阿丽亚娜6型运载火箭发射,在距离地球150×104 km的第二拉格朗日点(L2)上运行,任务周期4年。  相似文献   

4.
正2018年4月28日,美国宇航局的又一颗科学探测卫星TESS由太空探索技术公司的猎鹰9号火箭发射升空,开始了它探索未知世界的征程。TESS卫星的全称为凌日系外行星勘测卫星(Transiting Exoplanet Survey Satel ite),这个全称已经揭示了TESS卫星的功能和实现途径:通过凌日法寻找其他恒星周围的行星。进行巡天观测的行星普查员  相似文献   

5.
正2017年12月15日,谷歌与NASA联合宣布通过机器学习技术新发现了两颗系外行星。其中一颗属于距离地球2545光年的Kepler-90系统。Kepler-90i是Kepler-90系统中最小的行星,但仍比地球大30%,表面温度约400℃,并不适合生命生存,公转周期仅为14.4天。这一发现使Kepler-90系统的行星数量增加至8颗,成为目前在太阳系之外发现的最大行星系统。另一颗行星Kepler-80g大小与地球接近,是Ke-  相似文献   

6.
正行星本身并不发光,因此行星的探测难度要高于恒星探测。即便是处在太阳系内的天王星、海王星,由于它们与太阳的距离较远,在夜空中的光芒较为暗弱,人们直到近代才确认它们的存在。而对于其他恒星附近的系外行星,与我们的距离都在数光年之外,观测的难度比太阳系内的行星还要大很多。随着天文学观测方法的不断发展,天文学家们独辟蹊径,利用系外行星引发的中心恒星观测特征的变化来间接推断系外行星的存在。目前,探测系外行星常用的方法是视向速度法和凌日法,引力透镜法、脉冲星法  相似文献   

7.
正自1995年瑞士天文学家发现第一颗围绕类太阳恒星公转的行星飞马座51b以来,对太阳系外行星的搜寻和研究就逐渐发展成为当代天文学最前沿、最热门、最令公众感兴趣的领域。从事这方面观测的天文学家,被人们形象化地称为"行星猎人"。在行星猎人的不懈努力下,到2018年3月  相似文献   

8.
宜居星球     
正人类发现多少颗类地行星?在2009年以前,人类发现的系外行星大多是巨大的气态球体,这些系外行星没有像地球这样的坚硬土地,并且这些行星轨道距离恒星过近,气温比地球的高了好几倍。只有2007年发现的一颗名为Gliese 581C的行星最像地球。Gliese 581C围绕的恒星是一颗红矮星,并且位于宜居带。所谓宜居带,顾名思义是生命适宜居住的地带,离恒星的距离适中,使得星球上的温度不会太冷也不会太  相似文献   

9.
2011年12月5日,NASA称其“开普勒”空间望远镜已证实了首颗太阳系外宜居区内的行星。法国天文学家今年早些时候证实发现了首颗满足支持生命的关键要求的岩质系外行星。但“开普勒”望远镜2009年首次观测到的开普勒22b是得到NASA证实的首颗这类行星。所谓得到证实,是指天文学家已3次看到该行星从其母行星前方通过。  相似文献   

10.
正NASA凌星法系外行星勘测卫星(TESS)任务于2018年4月19日成功发射。TESS将进行6次变轨,最终抵达公转周期为13.7天的设计科学轨道。经过60天的检查和仪器测试,TESS将对临近太阳系的系外行星系统开展观测。NASA开普勒(Kepler)任务采用凌星法发现并确认了超过2600颗系外行星,其中大部分都围绕着300~3000光年以外的暗淡恒星旋转。作为Kepler任务的继任者,TESS搭载的4台宽视场相机将覆盖全  相似文献   

11.
A review of the fundamental physical processes in the planetary–exoplanetary environment is presented, with emphasis on nonlinear phenomena. First, we discuss briefly the detection of exoplanets and search for radio emissions from exoplanets. Next, we give an overview of the concepts of waves, instabilities, chaos and turbulence in the planetary–exoplanetary environment based on our present knowledge of the solar-terrestrial environment. We conclude by discussing cyclotron masers and chaos in nonthermal radio emissions in the planetary–exoplanetary environment.  相似文献   

12.
Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched. Two Mars exploration missions are designed to investigate geological structure, the material on Martian surface, and retrieve returned samples. The asteroids and main belt comet exploration is expected to explore two objects within 10 years. The small-body mission will aim to land on the asteroid and get samples return to Earth. The basic physical characteristics of the two objects will be obtained through the mission. The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter. In addition, we further introduce two space-based exoplanet survey by 2030, Miyin Program and Closeby Habitable Exoplanet Survey (CHES Mission). Miyin program aims to detect habitable exoplanets using interferometry, while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry. The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science.   相似文献   

13.
Tidal dissipation in the satellites of a giant planet may provide sufficient heating to maintain an environment favorable to life on the satellite surface or just below a thin ice layer. In our own solar system, Europa, one of the Galilean satellites of Jupiter, could have a liquid ocean which may occasionally receive sunlight through cracks in the overlying ice shell. In such case, sufficient solar energy could reach liquid water that organisms similar to those found under Antarctic ice could grow. In other solar systems, larger satellites with more significant heat flow could represent environments that are stable over an order of Aeons and in which life could perhaps evolve. We define a zone around a giant planet in which such satellites could exist as a tidally-heated habitable zone. This zone can be compared to the habitable zone which results from heating due to the radiation of a central star. In our solar system, this radiatively-heated habitable zone contains the Earth.  相似文献   

14.
The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters?

If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport?

Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception.

Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.  相似文献   


15.
There are different methods for finding exoplanets such as radial spectral shifts, astrometrical measurements, transits, timing etc. Gravitational microlensing (including pixel-lensing) is among the most promising techniques with the potentiality of detecting Earth-like planets at distances about a few astronomical units from their host star or near the so-called snow line with a temperature in the range 0–100 °C on a solid surface of an exoplanet. We emphasize the importance of polarization measurements which can help to resolve degeneracies in theoretical models. In particular, the polarization angle could give additional information about the relative position of the lens with respect to the source.  相似文献   

16.
Interstellar material is highly processed when subjected to the physical conditions that prevail in the inner regions of protoplanetary disks, the potential birthplace of habitable planets. Polycyclic aromatic hydrocarbons (PAHs) are abundant in the interstellar medium, and they have also been observed in the disks around young stars, with evidence for some modification in the latter. Using a chemical model developed for sooting flames, we have investigated the chemical evolution of PAHs in warm (1000–2000 K) and oxygen-rich (C/O < 1) conditions appropriate for the region where habitable planets may eventually form. Our study focuses on (1) delineating the conditions under which PAHs will react and (2) identifying the key reaction pathways and reaction products characterizing this chemical evolution. We find that reactions with H, OH and O are the main pathways for destroying PAHs over disk timescale at temperatures greater than about 1000 K. In the process, high abundances of C2H2 persist over long timescales due to the kinetic inhibition of reactions that eventually drive the carbon into CO, CO2 and CH4. The thermal destruction of PAHs may thus be the cause of the abundant C2H2 that has been observed in disks. We propose that protoplanetary disks have a ‘soot line’, within which PAHs are irreversibly destroyed via thermally-driven reactions. The soot line will play an important role, analogous to that of the ‘snow line’, in the bulk carbon content of meteorites and habitable planets.  相似文献   

17.
金星火山和气候探测任务(Venus Volcano Imaging and Climate Explorer,VOICE)聚焦金星火山与热演化历史、水与板块运动、内部结构和动力学、气候演化和生命信息探索等重大科学问题,提出采用极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR) 、下视与临边结合的微波辐射探测仪(Microwave Radiometric Sounder,MWRS)和紫外–可见–近红外多光谱成像仪(Ultraviolet-Visible-Near Infrared Multispectral Imager,UVN-MSI)等三个先进的有效载荷,在350 km圆轨道上对金星全球表面和大气联合探测。 PolSAR将对金星全球表面进行高分辨多极化雷达成像;MWRS将对金星全球云下大气的热力结构和化学组成,云中可能的宜居环境及与生命相关大气成分进行探测;UVN-MSI则实现大气全貌成像、表面光谱成像和闪电检测。通过多种先进探测载荷和技术手段的结合,VOICE任务将揭示金星构造热演化历史和超温室效应机理,探索其宜居性和生命信息。VOICE任务的实施将实现国际金星研究探索中许多“零”的突破,为理解行星宜居性和太阳系演化提供极为关键的观测支持,对提升中国在国际深空探测与空间科学研究中的地位产生重大影响。   相似文献   

18.
A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius–Clapeyron relation provides water–vapor feedback. The resulting iterative algorithm is applied to three “super-Earths” in the Gliese 581 system, including the “Goldilocks” planet g (Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star’s habitable zone without data or assumptions about a planet’s atmosphere.  相似文献   

19.
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.  相似文献   

20.
The models of chemical composition and structure of the Earth-type planetary atmospheres are offered. The optical properties of gaseous and disperse phases of the atmospheres are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号