共查询到20条相似文献,搜索用时 0 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(3):458-464
Solar energetic particles (SEPs) constitute a distinct population of energetic charged particles, which can be often observed in the near Earth space. SEP penetration into the Earth’s magnetosphere is a complicated process depending on particle magnetic rigidity and geomagnetic field structure. Particles in the several MeV energy range can only access to periphery of the magnetosphere and the polar cap regions, while the GeV particles can arrive at equatorial latitudes. Solar protons with energies higher than 100 MeV may be observed in the atmosphere above ∼30 km, and those with energies more than 1 GeV may be recorded even at the sea level. There are some observational evidences of SEP influence on atmospheric processes. Intruding into the atmosphere, SEPs affect middle atmosphere odd-nitrogen and ozone chemistry. Since spatial and temporal variations of SEP fluxes in the near Earth space are controlled by solar activity, SEPs may present an important link between solar activity and climate. The paper outlines dynamics of SEP fluxes in the near Earth space during the last decades. This can be useful for tracing relationship between SEPs and atmospheric processes. 相似文献
2.
O.V. Dudnik M.L. Kaiser 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1–14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft. 相似文献
3.
P Ehrenfreund B H Foing 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(7):1033-1042
The discovery and synthesis of fullerenes led to the hypothesis that they may be present and stable in interstellar space. Fullerenes have been reported in an impact crater on the LDEF spacecraft. Investigations of fullerenes in carbonaceous meteorites have yielded only small upper limits. Fullerene compounds and their ions could be interesting carrier molecules for some of the "diffuse interstellar bands" (DIBs), a long standing mystery in astronomy. We have detected two new diffuse bands that are consistent with laboratory measurements of the C60+, as first evidence for the largest molecule ever detected in space. Criteria for this identification are discussed. The inferred abundance (up to 0.9 % of cosmic carbon locked in C60+) suggests that fullerenes may play an important role in interstellar chemistry. We present new observations on DIB substructures consistent with fullerene compounds, and the search for neutral C60 in the diffuse medium. 相似文献
4.
Alexander F. Zakharov Francesco De Paolis Gabriele Ingrosso Achille Nucita Asghar Qadir 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2061-2063
General relativity (GR) can be probed by several tests in the weak gravitational field limit. On the contrary, very poor information exists about GR tests in strong gravitational fields. Here, we focus on the interaction of light rays with the strong gravitational field of a massive black hole and show that relativistic images may form. Hence, we calculate the shapes of shadows (mirages) forming just near BH horizons and discuss the possibility to estimate the black hole parameters (mass, spin and charge) by future astrometric missions. In 2007, the Radioastron space telescope will be launched and it will allow to evaluate those parameters for the black hole hosted at the center of our Galaxy. 相似文献
5.
R D Esposito M Durante G Gialanella G Grossi M Pugliese P Scampoli T D Jones 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(2):345-354
Astronauts' radiation exposure limits are based on experimental and epidemiological data obtained on Earth. It is assumed that radiation sensitivity remains the same in the extraterrestrial space. However, human radiosensitivity is dependent upon the response of the hematopoietic tissue to the radiation insult. It is well known that the immune system is affected by microgravity. We have developed a mathematical model of radiation-induced myelopoiesis which includes the effect of microgravity on bone marrow kinetics. It is assumed that cellular radiosensitivity is not modified by the space environment, but repopulation rates of stem and stromal cells are reduced as a function of time in weightlessness. A realistic model of the space radiation environment, including the HZE component, is used to simulate the radiation damage. A dedicated computer code was written and applied to solar particle events and to the mission to Mars. The results suggest that altered myelopoiesis and lymphopoiesis in microgravity might increase human radiosensitivity in space. 相似文献
6.
Eric Joffre Dave Wealthy Ignacio Fernandez Christian Trenkel Philipp Voigt Tobias Ziegler Waldemar Martens 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(11):3868-3879
The LISA (Laser Interferometer Space Antenna) mission has been selected by the European Space Agency’s Science Programme Committee as the third large-class mission of the Cosmic Vision Programme, addressing the science theme of the Gravitational Universe. With a planned launch date in 2034, LISA will be the first ever space-borne Gravitational Wave observatory, relying on laser interferometry between three spacecraft orbiting the Sun in a triangular formation. Airbus is currently leading an industrial Phase A system study on behalf of the European Space Agency. The paper will address the astrodynamics challenges associated with the LISA constellation design, driven by tight requirements on the geometric quality metrics of the near equilateral formation. 相似文献
7.
Y. Mogami N. Tokunaga S. A. Baba 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2087-2090
Life span is the most interesting and also the most important biologically relevant time to be investigated on the space station. As a model experiment, we proposed an investigation to assess the life span of clone generation of the ciliate Paramecium. In space, clone generation will be artificially started by conjugation or autogamy, and the life span of the cell populations in different gravitational fields (microgravity and onboard 1 x g control) will be precisely assessed in terms of fission age as compared with the clock time. In order to perform the space experiment including long-lasting culture and continuous measurement of cell division, we tested the methods of cell culture and of cell-density measurement, which will be available in closed environments under microgravity. The basic design of experimental hardware and a preliminary result of the cultivation procedure are described. 相似文献
8.
W C Hymer K Shellenberger R Grindeland 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):61-70
Cells of the mammalian pituitary gland synthesize and secrete several protein hormones which regulate a number of organ systems throughout the body. These include the musculoskeletal, immune, vascular and endocrine systems. Since changes occur in these tissues as a result of spaceflight, and since pituitary growth hormone (GH) and prolactin (PRL) play a role in the control of these systems on earth, we have focused attention over the last 10 years on GH and PRL cell function during and after spaceflight. The cumulative results of 4 spaceflight missions and several mimicked microgravity experiments establish 1) that production and release of biologically active GH and PRL is repeatedly and significantly attenuated (usually > 50%) and 2) that changes in cell morphology also occur. In this paper we describe our results within the framework of methodologies and approaches frequently used to study pituitary cell function on earth. In so doing we hope to develop future flight experiments aimed at uncovering possible microgravity "sensing systems" within the pituitary cell. 相似文献
9.
10.
F K Gmünder R N Suter M Kiess R Urfer A Nordau C-GCogoli 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):119-127
Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 microliters. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible. 相似文献
11.
P A Santy R T Jennings 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):151-155
Animal studies in space or analogous environments have suggested that there may be problems in the reproductive sphere; such factors might limit mankind's ability to live and work for extended periods of time in microgravity or on non-terrestrial planetary surfaces. A review of reproductive functioning in animal species studied during space flight demonstrated that most species were affected significantly by the absence of gravity and/or the presence of radiation. These two factors induced alterations in normal reproductive functioning independently of, as well as in combination with, each other. Based on animal models, we have identified several potential problem areas regarding human reproductive physiology and functioning in the space environment. While there are no current space flight investigations, the animal studies suggest priorities for future research in human reproduction. Such studies will be critical for the successful colonization of the space frontier. 相似文献
12.
M Hughes-Fulford H W Scheld 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(11):111-117
Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology. 相似文献
13.
Progress in plant research in space. 总被引:18,自引:0,他引:18
F R Dutcher E L Hess T W Halstead 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):159-171
Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects. 相似文献
14.
15.
Myrtille Laas-Bourez Gwendoline Blanchet Michel Boër Etienne Ducrott Alain Klotz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1270-1278
Since 2004, we observe satellites in the geostationary orbit with a network of robotic ground based fully automated telescopes called TAROT. One of them is located in France and the second at ESO, La Silla, Chile. The system processes the data in real time. Its wide field of view is useful for the discovery, the systematic survey and for the tracking of both catalogued and un-catalogued objects. We present a new source extraction algorithm based on morphological mathematic, which has been tested and is currently under implementation in the standard pipeline. Using this method, the observation strategy will correlate the measurements of the same object on successive images and give better detection rate and false alarm rate than the previous one. The overall efficiency and quality of the survey of the geostationary orbit has drastically improved and we can now detect satellites and debris in different orbits like Geostationary Transfer Orbit (GTO). Results obtained in real conditions with TAROT are presented. 相似文献
16.
Antonio G.V. de Brum Hauke Hussmann Kai Wickhusen Alexander Stark 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):648-661
In cooperation with Russia, the Brazilian deep space mission ASTER plans to send a small spacecraft to investigate the triple asteroid 2001-SN263. The nearest launch opportunities for this project include June 2022 and June 2025. One main exploration campaign is being planned with focus on the largest asteroid (Alpha). Among the instruments under development, a laser altimeter (named ALR) was preliminarily designed and presented in 2010–2011. Many studies to define mission and instruments requirements were performed aiming at the characterization of important issues for the successful realization of the mission. Among them, the identification of a suitable trajectory that could be followed by the ASTER spacecraft in the encounter phase, when the main campaign will take place. This paper describes the effort undertaken with focus on the laser altimeter operation. Possible encounter trajectories were modelled and simulated to identify suitable approach parameters and conditions allowing the accomplishment of the intended investigation. The simulation also involves the instrument operation, considering approach geometry, attitude, relative motion, time/date, and the dynamics of the main asteroid. From the laser altimeter point of view, keeping in mind the desired coverage results (50% minimum surface coverage of asteroid Alpha, complying with horizontal and vertical resolution requirements), results point out crucial features for the encounter trajectory, like the need for a small inclination (10-6 degrees; with respect to the asteroid's orbit), the most favourable spacecraft positioning (between the Sun and the asteroid) and pointing condition (back to the Sun), the minimum amount of achievable surface coverage (58%, focused on central areas), and the most proper time to conduct the main campaign (January 2025). Concerning the instrument, results offer refined values for divergence angle (500 to 650 μrad, half-cone), pulse repetition frequencies (from 1/20 to 1 Hz), and consequent data generation rates. A simulation tool that can use any 3D generated trajectories as input data was created for the analyses presented here. Although created for the ALR in this mission, this simple analysis tool can be adapted to other instruments in this or other missions. 相似文献
17.
Production and action of cytokines in space. 总被引:3,自引:0,他引:3
S K Chapes D R Morrison J A Guikema M L Lewis B S Spooner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):5-9
B6MP102 cells, a continuously cultured murine bone marrow macrophage cell line, were tested for secretion of tumor necrosis factor-alpha and Interleukin-1 during space flight. We found that B6MP102 cells secreted more tumor necrosis factor-alpha and interleukin-1 when stimulated in space with lipopolysaccharide than controls similarly stimulated on earth. This compared to increased secretion of interferon-beta and -gamma by lymphocytes that was measured on the same shuttle flights. Although space flight enhanced B6MP102 secretion of tumor necrosis factor-alpha, an experiment on a subsequent space flight (STS-50) found that cellular cytotoxicity, mediated by tumor necrosis factor-alpha, was inhibited. 相似文献
18.
A E Drysdale C J Rutkze L D Albright R L LaDue 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1502-1508
The cost of keeping people alive in space is assessed from a theoretical viewpoint and using two actual designs for plant growth systems. While life support is theoretically not very demanding, our ability to implement life support is well below theoretical limits. A theoretical limit has been calculated from requirements and the state of the art for plant growth has been calculated using data from the BIO-Plex PDR and from the Cornell CEA prototype system. The very low efficiency of our current approaches results in a high mission impact, though we can still see how to get a significant reduction in cost of food when compared to supplying it from Earth. Seeing the distribution of costs should allow us to improve our current designs. 相似文献
19.
G Reitz R Beaujean C Heilmann J Kopp M Leicher K Strauch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):495-500
Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and theromoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 microSv d-1 to 770 microSv d-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported. 相似文献
20.
B V Worgul 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):285-293
Radiation cataract, a non-stochastic effect on the lens, is readily amenable to non-invasive analysis. Thus, it provides the means to assess radiation risk in space and for long-term monitoring of those who frequent that environment. The importance of such evaluations are underscored by the uncertainties associated with the assignment of quality factors for the effects of heavy charged particles constituting cosmic and solar radiation. Experimental studies were conducted using albino rats to evaluate the cataractogenic potential of 570 MeV/amu Argon ions administered as both single and protracted doses. The cataract studies and investigations of quantitative cytopathological changes associated with them indicate that as the dose of heavy particles decreases, the relative biological effectiveness, compared to X rays, increases. Fractionating the exposures not only failed to reduce the cataractogenic effect but caused a dose-dependent enhancement in the time of onset of opacification. Cytopathologically, the damage caused by heavy particles, when compared to low-LET radiation was found to be quantitatively dissimilar but qualitatively identical. In addition, damage which might be consistent with microlesions was not evident. The data indicates that as regards the cataractogenic potential of heavy particles at low doses an assignment of a Quality Factor (QF) of at least 40 may be in order. 相似文献