首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Life support approaches for Mars missions are evaluated using an equivalent system mass (ESM) approach, in which all significant costs are converted into mass units. The best approach, as defined by the lowest mission ESM, depends on several mission parameters, notably duration, environment and consequent infrastructure costs, and crew size, as well as the characteristics of the technologies which are available. Generally, for the missions under consideration, physicochemical regeneration is most cost effective. However, bioregeneration is likely to be of use for producing salad crops for any mission, for producing staple crops for medium duration missions, and for most food, air and water regeneration for long missions (durations of a decade). Potential applications of in situ resource utilization need to be considered further.  相似文献   

2.
The atmosphere of Mars has many of the ingredients that can be used to support human exploration missions. It can be "mined" and processed to produce oxygen, buffer gas, and water, resulting in significant savings on mission costs. The use of local materials, called ISRU (for in-situ resource utilization), is clearly an essential strategy for a long-term human presence on Mars from the standpoints of self-sufficiency, safety, and cost. Currently a substantial effort is underway by NASA to develop technologies and designs of chemical plants to make propellants from the Martian atmosphere. Consumables for life support, such as oxygen and water, will probably benefit greatly from this ISRU technology development for propellant production. However, the buffer gas needed to dilute oxygen for breathing is not a product of a propellant production plant. The buffer gas needs on each human Mars mission will probably be in the order of metric tons, primarily due to losses during airlock activity. Buffer gas can be separated, compressed, and purified from the Mars atmosphere. This paper discusses the buffer gas needs for a human mission to Mars and consider architectures for the generation of buffer gas including an option that integrates it to the propellant production plant.  相似文献   

3.
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.  相似文献   

4.
The primary physical factors important to life's evolution on a planet include its temperature, pressure and radiation regimes. Temperature and pressure regulate the presence and duration of liquid water on the surface of Mars. The prolonged presence of liquid water is essential for the evolution and sustained presence of life on a planet. It has been postulated that Mars has always been a cold dry planet; it has also been postulated that early mars possessed a dense atmosphere of CO2 (> or = 1 bar) and sufficient water to cut large channels across its surface. The degree to which either of these postulates is true correlates with the suitability of Mars for life's evolution. Although radiation can destroy living systems, the high fluxes of UV radiation on the martian surface do not necessarily stop the origin and early evolution of life. The probability for life to have arisen and evolved to a significant degree on Mars, based on the postulated ranges of early martian physical factors, is almost solely related to the probability of liquid water existing on the planet for at least hundreds of millions to billions of years.  相似文献   

5.
Life on Mars? I. The chemical environment.   总被引:1,自引:0,他引:1  
The origin of life at its abiotic evolutionary stage, requires a combination of constituents and environmental conditions that enable the synthesis of complex replicating macromolecules from simpler monomeric molecules. It is very likely that the early stages of this evolutionary process have been spontaneous, rapid and widespread on the surface of the primitive Earth, resulting in the formation of quite sophisticated living organisms within less than a billion years. To what extent did such conditions prevail on Mars? Two companion-papers (Life on Mars? I and II) will review and discuss the available information related to the chemical, physical and environmental conditions on Mars and assess it from the perspective of potential exobiological evolution.  相似文献   

6.
地外生命探索是国际上广泛关注的深空探测重要目标之一.中国第一个火星探测器天问一号成功发射,开启了对火星表面形貌、生命迹象等进行科学探索的旅程.作为太阳系中与地球最为相似的星球,火星带给人类无穷的遐想.火星上是否存在生命,未来人类是否可以移民火星,磷作为重要的生命元素,在生命的整个进化过程具有不可替代的作用.磷酸盐可以作为一种潜在的生命标志物,为火星生命探测提供新的思路和线索.  相似文献   

7.
过站航班地面保障过程预测是机场协同决策系统的重要功能。针对目前无法实现过程精细化动态预测且精度较低的问题,提出了一种基于贝叶斯网络的过站航班地面保障过程动态预测方法。建立了地面保障过程贝叶斯网络模型,设计了基于航班属性的初始样本空间生成算法,结合高斯核概率密度估计构建了地面保障过程动态预测方法。某枢纽机场实际数据的仿真结果表明:所提方法在充分考虑航班运行属性的基础上实现了各保障节点的动态预测,其平均绝对误差仅为2.224 1 min,均方根误差相比其他方法低近2 min,能够为机场运行短时战术组织提供客观的决策依据。   相似文献   

8.
Considerations of design for life support systems.   总被引:1,自引:0,他引:1  
During the design phase for construction of artificial ecosystems, the following considerations are important. (1) Influences on living things in the ecosystem, such as lifestyles and physiological functions caused by stresses due to environmental changes. The long stay in the artificial ecosystem has a possibility to lead to evolutional change in the living things. (2) The system operation method in trouble, which relates to maintainability. (3) The system metamorphosis according to new technologies. (4) Route minimization of material flow that leads to an optimum system layout.  相似文献   

9.
Life Support is a basic issue since manned space flight began. Not only to support astronauts and cosmonauts with the essential things to live, however, also animals which were carried for research to space etc. together with men need support systems to survive under space conditions. Most of the animals transported to space participate at the life support system of the spacecraft. However, aquatic species live in water as environment and thus need special developments. Research with aquatic animals has a long tradition in manned space flight resulting in numerous life support systems for them starting with simple plastic bags up to complex support hardware. Most of the recent developments have to be identified as part of a technological oriented system and can be described as small technospheres. As the importance arose to study our Earth as the extraordinary Biosphere we live in, the modeling of small ecosystems began as part of ecophysiological research. In parallel the investigations of Bioregenerative Life Support Systems were launched and identified as necessity for long-term space missions or traveling to Moon and Mars and beyond. This paper focus on previous developments of Life Support Systems for aquatic animals and will show future potential developments towards Bioregenerative Life Support which additionally strongly benefits to our Earth's basic understanding.  相似文献   

10.
11.
Man is now entering an era of colonizing the moon and exploration of Mars. The crewmembers of a piloted mission to Mars will be exposed to inner belt trapped protons, the outer trapped electrons, and the galactic cosmic radiation. In addition there is always the added risk of acute exposure to a solar particle event. Current radiation risk is estimated using the idea of absorbed dose and ICRP-26, LET-dependent quality factors. In a spacecraft with aluminum walls (2 g cm-2) at solar minimum the calculated dose equivalent is 0.73 Sv for a 406-day mission. Based on the current thinking this leads to an excess cancer mortality in a 35 year male of about 1%. About 75% of the dose equivalent is contributed by HZE particles and target fragments with average quality factors of 10.3 and 20, respectively. The entire concept of absorbed dose, quality factor, and dose equivalent as applied to such missions needs to be reexamined, in light of the fact that less than 50% of the nuclei in the body of the astronaut would have been traversed by a single GCR nuclei in the 406-day mission. Clearly, more biologically relevant information about the effects of heavy ions and target fragments is needed and fluence based risk estimation strategy developed for such long term stays in space.  相似文献   

12.
The detection of organics on Mars remains an important scientific objective. Advances in instrumentation and laboratory techniques provide new insight into the lower level detection limit of complex organics in closely packed media. Preliminary results demonstrate that algae present in a palagonite medium do exhibit a spectral reflectance feature in the visible range for dry mass weight ratios of algae to palagonite greater than 6%--which corresponds to 30 mg algae in a 470 mg (just optically thick (< 3 mm) layer) palagonite matrix. This signature most probably represents chlorophyll a, a light harvesting pigment with an emission peak at 678 nm.  相似文献   

13.
Waste technologies for Mars missions have been analyzed, considering equivalent system mass and interface loads. Storage or dumping seems most appropriate for early missions with low food closure. Composting or other treatment of inedible biomass in a bioreactor seems most attractive for moderate food closure (50-75%). Some form of physicochemical oxidation of the composted residue might be needed for increased food closure, but oxidation of all waste does not seem appropriate due to excess of production of carbon dioxide over demand. More comprehensive analysis considering interfaces with other mission systems is needed. In particular, in-situ resource utilization is not considered, and might provide resources more cheaply than waste processing.  相似文献   

14.
Engineering concepts for inflatable Mars surface greenhouses.   总被引:1,自引:0,他引:1  
A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting.  相似文献   

15.
The scientific objectives of Mars exploration can be framed within the overarching theme of exploring Mars as another home for life, both for evidence of past or present life on Mars, and as a potential future home for human life. The two major areas of research within this theme are: 1) determining the relationship between planetary evolution, climate change, and life, and 2) determining the habitability of Mars. Within this framework, this paper discusses the exploration objectives for exobiology, climatology and atmospheric science, geology, and martian resource assessment. Human exploration will proceed in four major phases: 1) Precursor missions which will obtain environmental knowledge necessary for human exploration, 2) Emplacement phase which includes the first few human landings where crews will explore the local area of the landing site; 3) Consolidation phase missions where a permanent base will be constructed and crews will be capable of detailed exploration over regional scales; 4) Utilization phase, in which a continuously occupied permanent Mars base exists and humans will be capable of detailed global exploration of the martian surface. The phases of exploration differ primarily in the range and capabilities of human mobility. In the emplacement phase, an unpressurized rover, similar to the Apollo lunar rover, will be used and will have a range of a few tens of kilometers. In the Consolidation phase, mobility will be via a pressurized all-terrain vehicle capable of expeditions from the base site of several weeks duration. In the Utilization phase, humans will be capable of several months long expeditions to any point on the surface of Mars using a suborbital rocket equipped with habitat, lab, and return vehicle. Because of human mobility limitations, it is important to extend the range and duration of exploration in all phases by using teleoperated rover vehicles. Site selection for human missions to Mars must consider the multi-decade time frame of these four phases. We suggest that operations in the first two phases be focused in the regional area containing the Coprates Quadrangle and adjacent areas.  相似文献   

16.
人类的血管中,总是流淌着冒险的岩浆。为了探索未知的世界,总有人不惜抛却生命。在历史长河中,离开家乡移民远方的故事比比皆是。这些有去无回的人们虽然永远不能回到他们的起航港口,却把人类文明带到了更远的地方。千百年来,这些冒险者的业绩成就了繁荣的地球文明。那么,有可能把这种精神扩展到宇宙中的其他天体吗?有人愿意飞向那些没有氧气、没有森林和湖泊,更没有丰美草原和处女地的荒芜星球,再也不回来吗?  相似文献   

17.
Data on the tuberization, harvest index, and morphology of 2 cvs of white potato (Solanum tuberosum L.) grown at 12, 16, 20, 24 and 28 degrees C, 250, 400 and 550 micromoles s-1 m-2 photosynthetic photon flux (PPF), 350, 1000 and 1600 microliters l-1 CO2 will be presented. A productivity of 21.9 g m-2 day-1 of edible tubers from a solid stand of potatoes grown for 15 weeks with continuous irradiation at 400 micromoles s-1 m-2, 16 degrees C and 1000 microliters l-1 CO2 has been obtained. This equates to an area of 34.3 m2 being required to provide 2800 kcal of potatoes per day for a human diet. Separated plants receiving side lighting have produced 32.8 g m-2 day-1 which equates to an area of 23.6 m2 to provide 2800 kcal. Studies with side lighting indicate that productivities in this range should be realized from potatoes. Glycoalkaloid levels in tubers of controlled-environment-grown plants are within the range of levels found in tubers of field grown plants. The use and limitation of recirculating solution cultures for potato growth is discussed.  相似文献   

18.
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars.  相似文献   

19.
In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given.  相似文献   

20.
The ability of living organisms to survive extraterrestrial conditions has implications for the origins of life in the solar system. We have therefore studied the survival of viruses, bacteria, yeast, and fungi under simulated Martian conditions. The environment on Mars was simulated by low temperature, proton irradiation, ultraviolet irradiation, and simulated Martian atmosphere (CO2 95.46%, N2 2.7%, water vapor 0.03%) in a special cryostat. After exposure to these conditions, tobacco mosaic virus and spores of Bacillus, Aspergillus, Clostridium, and some species of coccus showed significant survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号