共查询到20条相似文献,搜索用时 15 毫秒
1.
K Eguchi-Kasai M Murakami H Itsukaichi K Fukutsu T Kanai Y Furusawa K Sato H Ohara F Yatagai 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):109-118
It can be noted that it is not simple double strand breaks (dsb) but the non-reparable breaks that are associated with high biological effectiveness in the cell killing effect for high LET radiation. Here, we have examined the effectiveness of fast neutrons and low (initial energy = 12 MeV/u) or high (135 MeV/u) energy charged particles on cell death in 19 mammalian cell lines including radiosensitive mutants. Some of the radiosensitive lines were deficient in DNA dsb repair such as LX830, M10, V3, and L5178Y-S cells and showed lower values of relative biological effectiveness (RBE) for fast neutrons if compared with their parent cell lines. The other lines of human ataxia-telangiectasia fibroblasts, irs 1, irs 2, irs 3 and irs1SF cells, which were also radiosensitive but known as proficient in dsb repair, showed moderated RBEs. Dsb repair deficient mutants showed low RBE values for heavy ions. These experimental findings suggest that the DNA repair system does not play a major role against the attack of high linear energy transfer (LET) radiations. Therefore, we hypothesize that a main cause of cell death induced by high LET radiations is due to non-reparable dsb, which are produced at a higher rate compared to low LET radiations. 相似文献
2.
D Frankenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):235-248
DNA double-strand breaks (DSB) are induced linearly with absorbed dose both for sparsely and densely ionizing radiations. By enzymatic repair the linear relationship between the number of DSB and absorbed dose is converted into a non linear one. Furthermore, the RBE-values of high LET radiations for residual DSB increase with increasing amount of DSB repair especially in the low dose range. Unrepaired and/or misrepaired DSB are supposed to be responsible for chromosomal aberrations, cell killing, oncogenic cell transformation and gene mutation. At low doses, for these endpoints much higher RBE-values than those for initial DSB are observed. However, with increasing doses the RBE-values for these endpoints approach those for initial DSB. These observations are likely to be interpreted using the following two parameters of the energy deposition structure: 1. The distribution of clusters with respect to their size at the nm-scale and to the number of ionizations per cluster (cluster distribution). 2. The distribution of distances between clusters of definite size and with definite number of ionizations (distance distribution of clusters). For the induction of DSB solely the ionization density in clusters of nm-dimensions (i.e. the cluster distribution) is important. For unrepaired or misrepaired DSB (responsible for chromosome aberrations, cell killing, oncogenic cell transformation and gene mutation) both the cluster distribution and the distance distribution of clusters are relevant. At low doses the distance distribution of clusters along a single particle track determines the RBE-value. However, with increasing dose the distribution of clusters produced by all particles traversing the cell nucleus becomes increasingly determinant. Here, solely the cluster distribution is important as it is the case for the induction of DSB. 相似文献
3.
D Frankenberg H J Brede U J Schrewe C h Steinmetz M Frankenberg-Schwager G Kasten E Pralle 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(10):2085-2094
Induction of DNA double-strand breaks (dsb) and their distribution are dependent on the energy deposition pattern within the cell nucleus (physical structure) and the ultrastructure of the chromosomes and its variation by the cell cycle and gene activities (biological structure). For electron radiation very similar RBE-values are observed for mammalian and yeast cells (AlK, 1.5 keV, 15 keV/micrometer: 2.6 in mammalian cells and 2.2 in yeast; CK 0.278 keV, 23 keV/micrometer: approx. 2.5 in mammalian cells and 3.8 in yeast). In contrast, the RBE-values for the induction of dsb of 4He2+ and light ions in the LET range from about 100 keV/micrometer up to 1000 keV/micrometer are significantly higher for yeast cells compared to mammalian cells. For example, the RBE-value of alpha-particles (120 keV/micrometer) is about 1.2 for mammalian cells whereas for yeast the RBE-value is about 2.5. The yeast chromatin has less condensed fibres compared with mammalian cells. Since a single CK photoelectron can induce only one dsb, the different condensation of the mammalian and yeast chromatin has no influence. However, particles may induce more than one dsb when traversing a chromatin fibre. The probability for the induction of closely neighboured dsb is higher the more condensed the chromatin fibres are. Since small DNA fragments (50 bp up to several kbp) are lost by standard methods of lysis, the underestimation of dsb yields increases with fibre condensation, which is in accordance with the observes dsb yields in mammalian cells and yeast. In order to obtain relevant yields of dsb (and corresponding RBE-values) the measurement of all DNA fragments down to about 50 bp are needed. 相似文献
4.
M Lobrich 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):551-560
Two assay were employed to study the induction and repair of DNA double-strand breaks (dsbs) in normal human fibroblasts after exposure to particle radiation covering an LET range from 1 to 350 keV/micrometer. The hybridization assay allows measurement of absolute induction frequencies in defined regions of the genome and quantitates rejoining of correct DNA ends while the FAR assay determines all rejoining events, correct and incorrect. Assuming Poisson statistics for the number of breaks per DNA fragment investigated, and thus neglecting any clustering of breaks, we found the induction rate to decrease with increasing LET of the particles. RBE values compared to 225 kVp X-rays dropped to 0.48 for the highest LETs. Repair studies of X-ray-induced dsbs showed that almost all breaks (>95%) are rejoined after incubation times of 24 h while the frequency for correct rejoining is only 70%. Thus about 25% of the initially induced breaks are rejoined by the connection of incorrect DNA ends. Postirradiation incubation after particle irradiation showed less efficient total rejoining with increasing LET and an impaired ability for correct rejoining. The frequency for rejoining of incorrect DNA ends was found to be independent of LET. The possible biological significance of the different rejoining events is discussed. 相似文献
5.
M Suzuki Y Kase T Nakano T Kanai K Ando 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(12):1663-1671
We have studied the relationship between cell killing and the induction of residual chromatin breaks on various human cell lines and primary cultured cells obtained by biopsy from patients irradiated with either X-rays or heavy-ion beams to identify potential bio-marker of radiosensitivity for radiation-induced cell killing. The carbon-ion beams were accelerated with the Heavy Ion Medical Accelerator in Chiba (HIMAC). Six primary cultures obtained by biopsy from 6 patients with carcinoma of the cervix were irradiated with two different mono-LET beams (LET= 13 keV/μm, 76 keV/μm) and 200kV X rays. Residual chromatin breaks were measured by counting the number of non-rejoining chromatin fragments detected by the premature chromosome condensation (PCC) technique after a 24 hour postirradiation incubation period. The induction rate of residual chromatin breaks per cell per Gy was the highest for 76 keV/μm beams on all of the cells. Our results indicated that cell which was more sensitive to the cell killing was similarly more susceptible to induction of residual chromatin breaks. Furthermore there is a good correlation between these two end points in various cell lines and primary cultured cells. This suggests that the detection of residual chromatin breaks by the PCC technique may be useful as a predictive assay of tumor response to cancer radiotherapy. 相似文献
6.
G Taucher-Scholz J Heilmann G Kraft 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):83-92
DNA double-strand breaks (DSBs) are the crucial events ultimately leading to cell inactivation. Aimed at understanding the biological action of the charged particle component of cosmic radiation, the induction of DSBs and their repairability was evaluated in Chinese hamster ovary (CHO-K1) cells after exposure to accelerated particles. Irradiations were performed with various ion species including O, Ni and Ca, covering a LET range from 20 to 2000 keV/micrometer. DSBs were determined for plateau-phase cells using the electrophoretic elution of radiation-induced DNA fragments in a static electric field combined with fluorescence scanning of ethidium bromide stained gels. Assuming a DSB yield of 22 DSB per Gy per cell, as derived from X-irradiation, cross-sections for DSB production were calculated from the corresponding fluence-effect curves at a fraction of 0.7 of DNA retained. The same ordinate was used as a reference for the calculation of relative biological efficiency (RBE) for DSB induction. At low LETs (< or = 20 keV/micrometer) RBE values slightly above unity were obtained, but a decrease of RBE was observed with increasing LET. In the region of 100-200 keV/micrometer the RBE for initial DSB induction was clearly below unity. Rejoining of DSBs was assessed by measuring the fraction of DNA retained following post-irradiation incubation of cells under culture conditions. After exposure to Ca ions, DSB rejoining was considerably impaired compared to X-rays. 相似文献
7.
DNA fragmentation by charged particle tracks. 总被引:1,自引:0,他引:1
B Stenerlow E Hoglund J Carlsson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):859-863
High-LET (linear energy transfer) charged particles induce DNA double-strand breaks (DSB) in a non-random fashion in mammalian cells. The clustering of DSB, probably determined by track structure as well as chromatin conformation, results in an excess of small- and intermediate-sized DNA fragments. DNA fragmentation in normal human fibroblasts (GM5758) was analyzed by pulsed-field gel electrophoresis after irradiation with photons (60Co) or 125 keV/micrometers nitrogen ions. Compared to conventional DSB analysis, i.e. assays only measuring the fraction of DNA smaller than a single threshold, the relative biological effectiveness (RBE) for DSB induction increased with 100%. Further, the size distribution of DNA fragments showed a significant dependence on radiation quality, with an excess of fragments up to 1 Mbp. Irradiation of naked genomic DNA without histone proteins increased the DSB yields 25 and 13 times for photons and nitrogen ions, respectively. The results suggest possible roles of both track structure and chromatin organization in the distribution of DNA double-strand breaks along the chromosome. 相似文献
8.
G Taucher-Scholz J A Stanton M Schneider G Kraft 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(2-3):73-80
Simian virus (SV40) DNA was used to study the induction of DNA strandbreaks by heavy ions varying in LET. DNA was exposed to X-rays and to accelerated particles either in dilute solution or in the presence of different radical scavengers. Relative proportions of the intact supercoiled DNA, nicked form arising from single strand breaks (SSB) and linear molecules produced by double strandbreaks (DSB) were quantified on the base of their electrophoretic mobility in agarose gels. Cross sections for the induction of SSBs and DSBs were calculated from the slope of dose effect curves. Mercaptoethanol was found to protect more efficiently against DNA strand breakage than Tris. When the biological efficiency, i.e. the number of strand breaks per unit dose and molecule weight was evaluated as a function of LET, curves for SSB induction always showed a continuous decrease. For DSB induction, an increase in the yield of DSBs with a maximum around 500 keV/micrometer was observed in the presence of radical scavenger. This peak of biological efficiency gradually disappeared when the radiosensitivity of the system was increased, and was no longer apparent in the dilute buffer system, where DNA showed a high susceptibility to strand breakage. When the relative biological efficiency was plotted versus LET, the curve for DSB induction observed in a low radical scavenging environment paralleled the curve obtained for SSB induction. 相似文献
9.
Early and late mammalian responses to heavy charged particles. 总被引:2,自引:0,他引:2
E J Ainsworth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):153-165
This overview summarizes murine results on acute lethality responses, inactivation of marrow CFU-S and intestinal microcolonies, testes weight loss, life span shortening, and posterior lens opacification in mice irradiated with heavy charged particles. RBE-LET relationships for these mammalian responses are compared with results from in vitro studies. The trend is that the maximum RBE for in vivo responses tends to be lower and occurs at a lower LET than for inactivation of V79 and T-1 cells in culture. Based on inactivation cross sections, the response of CFU-S in vivo conforms to expectations from earlier studies with prokaryotic systems and mammalian cells in culture. Effects of heavy ions are compared with fission spectrum neutrons, and the results are consistent with the interpretation that RBEs are lower than for fission neutrons at about the same LET, probably due to differences in track structure. Issues discussed focus on challenges associated with assessments of early and late effects of charged particles based on dose, RBE and LET, and with the concordance or discordance of results obtained with in vivo and in vitro model systems. Models for radiation damage/repair and misrepair should consider effects observed with in vivo as well as in vitro model systems. 相似文献
10.
Correlation between cell death and induction of non-rejoining PCC breaks by carbon-ion beams. 总被引:1,自引:0,他引:1
M Suzuki Y Kase T Kanai K Ando 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(4):561-568
We have shown a correlation between cell death and induction of non-rejoining chromatin breaks in two normal human cells and three human tumor cell lines irradiated by carbon-ion beams and X rays. Non-rejoining chromatin breaks were measured by counting the number of remaining chromatin fragments detected by the premature chromosome condensation (PCC) technique. Carbon-ion beams were accelerated by the Heavy Ion Medical Accelerator in Chiba (HIMAC). The cells were irradiated by two different mono-LET beams (LET = 13 keV/micrometer and 77 keV/micrometer ) and 200 kV X rays. The RBE values of cell death for carbon-ion beams relative to X rays were 1.1 to 1.4 for 13 keV/micrometer beams and 2.5 to 2.9 for 77 keV/micrometer beams. The induction rate of non-rejoining PCC breaks per cell per Gy was found to be highest for the 77 keV/micrometer beams for all of the cell lines.The results found in this study show that there is a good correlation between cell death and induction of non-rejoining PCC breaks for these human cell lines. 相似文献
11.
12.
U Micke G Horneck S Kozubek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):207-211
Cells of Bacillus subtilis strain TKJ 8431 in stationary phase were irradiated with X-rays (150 kV at DLR) or heavy ions (Ne, Ar, Pb with residual energies between 3 and 15 MeV/u at GSI). The action cross section for the formation of double strand breaks in the DNA of the irradiated cells follows a similar dependence on mass and energy of the ions as has been found for various biological endpoints, e.g. inactivation, mutagenesis and repair efficacy. 相似文献
13.
A. Urban K.M. Torkar J. Bjordal J.A˚. Lundblad F. Søraas B. Grandal L.G. Smith J.C. Ulwick R.P. Vancour 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(10):77-80
Measurements of the precipitation of electrons and positive ions (in the keV to MeV range) detected aboard eight rockets launched from Northern Scandinavia are reported together with corresponding satellite data. The downgoing integral fluxes indicate the temporal fluctuations during each flight. Height profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance are given. 相似文献
14.
Panagiota Petkaki Alexander L. MacKinnon 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas. 相似文献
15.
R Roots W Holley A Chatterjee E Rachal G Kraft 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(10):45-55
We have aimed to present a comprehensive review of our understanding to date of the formation of DNA strand breaks induced by high LET radiation. We have discussed data obtained from DNA in solution as well as from the formation and "repair" of strand breaks in cell DNA. There is good agreement, qualitatively, between these two systems. Results were evaluated for two parameters: (1) effectivity per particle, the cross section (sigma) in micrometers 2/particle; and (2) the strand break induction frequency as number of breaks per Gy per unit DNA (bp or dalton). A series of biological effects curves (one for each Z-number) is obtained in effectivity versus LET plots. The relationships between induction frequencies of single-strand breaks, or double-strand breaks, or the residual "irrepairable" breaks and LET-values have been evaluated and discussed for a wide spectrum of heavy ions, both for DNA in solution and for DNA in the cell. For radiation induced total breaks in cell DNA, the RBE is less than one, while the RBE for the induction of DSBs can be greater than one in the 100-200 keV/micrometers range. The level of irrepairable strand breaks is highest in this same LET range and may reach 25 percent of the initial break yield. The data presented cover results obtained for helium to uranium particles, covering a particle incident energy range of about 2 to 900 MeV/u with a corresponding LET range of near 16 to 16000 keV/micrometers. 相似文献
16.
B.A. Tverskoi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):5-14
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal. 相似文献
17.
M Schafer C Schmitz H Bucker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):203-206
Vegetative cells of E. coli differing in their radiosensitivity have been used in heavy ion irradiation experiment. Besides inactivation measurements also the induction of DNA double strand breaks (DSB) have been measured using the method of pulse-field gel electrophoresis. This method allows to separate linear DNA with length up to 8 Mio base pairs. After irradiation with heavy ions we find a higher amount of low molecular weight fragments when compared to sparsely ionizing radiation. This agrees with the idea that heavy ions as a structured radiation have a high probability to induce more than one strand break in a DNA molecule if the particle hits the DNA. The amount of intact DNA remaining in the agarose plugs decreases exponentially for increasing radiation doses or particle fluences. From these curves cross sections for the induction of DSB after heavy ion irradiation have been determined. These results will be discussed in comparison to the results for cell survival. 相似文献
18.
Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts. 总被引:1,自引:0,他引:1
D J Chen K Tsuboi T Nguyen T C Yang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):347-354
The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus. 相似文献
19.
Nikolai Baranets Yuri Ruzhin Nikolai Erokhin Valeri Afonin Jaroslav Vojta Jan Šmilauer Karel Kudela Jan Matišin Mircea Ciobanu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
In this paper the investigation of wave-particle interaction during simultaneous injection of electron and xenon ion beams from the satellite Intercosmos-25 (IK-25) carried out using the data of the double satellite system with subsatellite Magion-3 (APEX). Results of active space experiment devoted to the beam-plasma instability are partially presented in the paper Baranets et al. (2007). A specific feature of the experiment carried out in orbits 201, 202 was that charged particle flows were injected in the same direction along the magnetic field lines B0 so the oblique beam-into-beam injection have been produced. Results of the beam-plasma interaction for this configuration were registered by scientific instruments mounted on the station IK-25 and Magion-3 subsatellite. Main attention is paid to study the electromagnetic and longitudinal waves excitation in different frequency ranges and the energetic electron fluxes disturbed due to wave-particle interaction with whistler waves. The whistler wave excitation on the 1st electron cyclotron harmonic via normal Doppler effect during electron beam injection in ionospheric plasma are considered. 相似文献
20.
Induction and repair of DNA strand breaks in bovine lens epithelial cells after high LET irradiation. 总被引:1,自引:0,他引:1
C Baumstark-Khan J Heilmann H Rink 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(6):1583-1591
The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV micrometers-1) no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification. 相似文献