共查询到20条相似文献,搜索用时 15 毫秒
1.
A E Nicogossian J D Rummel L Leveton R Teeter 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(1):329-337
By the turn of this century, long-duration space missions, either in low Earth orbit or for got early planetary missions, will become commonplace. From the physiological standpoint, exposure to the weightless environment results in changes in body function, some of which are adaptive in nature and some of which can be life threatening. Important issues such as environmental health, radiation protection, physical deconditioning, and bone and muscle loss are of concern to life scientists and mission designers. Physical conditioning techniques such as exercise are not sufficient to protect future space travellers. A review of past experience with piloted missions has shown that gradual breakdown in bone and muscle tissue, together with fluid losses, despite a vigorous exercise regimen can ultimately lead to increased evidence of renal stones, musculoskeletal injuries, and bone fractures. Biological effects of radiation can, over long periods of time increase the risk of cancer development. Today, a vigorous program of study on the means to provide a complex exercise regimen to the antigravity muscles and skeleton is under study. Additional evaluation of artificial gravity as a mechanism to counteract bone and muscle deconditioning and cardiovascular asthenia is under study. New radiation methods are being developed. This paper will deal with the results of these studies. 相似文献
2.
Progress in plant research in space. 总被引:18,自引:0,他引:18
F R Dutcher E L Hess T W Halstead 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(8):159-171
Progress is reviewed of spaceflight research conducted with plants between 1987 and 1992. Numerous plant experiments have been performed on spacecraft and sounding rockets in the past five years by scientists of the US, the former Soviet Union, Europe, and other areas. The experiments are categorized into three areas: gravity sensing, transduction, and response; development and reproduction; and metabolism, photosynthesis, and transport. The results of these experiments continue to demonstrate that gravity and/or other factors of spaceflight affect plants at the organismal, cellular, subcellular, and molecular levels, resulting in changes in orientation, development, metabolism, and growth. The challenge now is to truly dissect the effects of gravity from those of other spaceflight factors and to identify the basic mechanisms underlying gravity's effects. 相似文献
3.
Neurobiological problems in long-term deep space flights. 总被引:1,自引:0,他引:1
M E Vazquez 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1998,22(2):171-183
Future missions in space may involve long-term travel beyond the magnetic field of the Earth, subjecting astronauts to radiation hazards posed by solar flares and galactic cosmic rays, altered gravitation fields and physiological stress. Thus, it is critical to determine if there will be any reversible or irreversible, detrimental neurological effects from this prolonged exposure to space. A question of particular importance focuses on the long-term effects of the space environment on the central nervous system (CNS) neuroplasticity, with the potential acute and/or delayed effects that such perturbations might entail. Although the short-term effects of microgravity on neural control were studied on previous low earth orbit missions, the late consequences of stress in space, microgravity and space radiation have not been addressed sufficiently at the molecular, cellular and tissue levels. The possibility that space flight factors can interact influencing the neuroplastic response in the CNS looms critical issue not only to understand the ontogeny of the CNS and its functional integrity, but also, ultimately the performance of astronauts in extended space forays. The purpose of this paper is to review the neurobiological modifications that occur in the CNS exposed to the space environment, and its potential consequences for extended deep space flight. 相似文献
4.
M Andre P Chagvardieff 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,24(3):265-269
During the past 10 years, the main part of CELSS studies has concerned the exploration of limits of plant productivity. Very high yields were obtained in continuous and high lighting, without reaching any limit. Concepts of mineral nutrition were renewed. CELSS activities now induce a development in the techniques of image processing applied to plants in order to follow the growth, to detect stresses or diseases or to pilot harvesting robots. Notable efforts concern the development of sensors, the study of trace contaminants and the micro-organisms monitoring. In parallel, several instruments for plant culture in closed Systems were developed. The advantages of closure are emphasised in comparison with open flow systems. The concept of Artificial Ecosystems developed for space research is more and more taken into account by the scientific community. It is considered as a new tool to study basic and applied problems related to ecology and not especially concerned with space research. 相似文献
5.
H Bucker R Facius 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(11):305-314
With the advent of a permanent manned space station the longstanding problems of radiation protection in manned spaceflight have acquired an immediacy. This paper endeavors to emphasize the gaps of our knowledge which must be closed for effective radiation protection. The information that is required includes the accurate determination of the exposure inside the space station to the various components of tile ionizing radiation, the evaluation of the biological importance of the different radiation qualities and the depth dose distribution of the less penetrating component. There is also the possibility of an interaction with weightlessness. It is necessary to establish adequate radiation protection standards and a system of dosimetric surveillance. There is a need for studies of possible methods of hardening selective shielding of the space station. Spaceflight experiments, which might contribute to the solution of some of these problems are discussed. 相似文献
6.
M Durante A Kronenberg 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(2):180-184
Human exposure to ionizing radiation is one of the acknowledged potential showstoppers for long duration manned interplanetary missions. Human exploratory missions cannot be safely performed without a substantial reduction of the uncertainties associated with different space radiation health risks, and the development of effective countermeasures. Most of our knowledge of the biological effects of heavy charged particles comes from accelerator-based experiments. During the 35th COSPAR meeting, recent ground-based experiments with high-energy iron ions were discussed, and these results are briefly summarised in this paper. High quality accelerator-based research with heavy ions will continue to be the main source of knowledge of space radiation health effects and will lead to reductions of the uncertainties in predictions of human health risks. Efforts in materials science, nutrition and pharmaceutical sciences and their rigorous evaluation with biological model systems in ground-based accelerator experiments will lead to the development of safe and effective countermeasures to permit human exploration of the Solar System. 相似文献
7.
R Facius M Schafer H Bucker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(10):175-185
Since the beg inning of manned space flight the potentially unique radiobiological properties of the heavy ions of the cosmic radiation had been, apart from possible interactions of radiation effects with biological effects of weightlessness, of major concern with respect to the assessment of radiation hazards in manned space flight. Radiobiological findings obtained from space flight experiments and ground based experiments with densely ionizing radiation are discussed, which suggest qualitative differences between the radiobiological mechanisms of sparsely ionizing and densely ionizing radiation. These findings comprise the observation of a long lateral range of radiobiological effectiveness around tracks of single heavy ions, the observation of micro lesions induced in biological targets by the penetration of heavy ions, the nonadditivity of radiobiological effects from sparsely and densely ionizing radiation, the different kinetics for the expression of late effects induced by sparsely or densely ionizing radiation, and the observation of a reversed dose rate effect for early and late effects induced by densely ionizing radiation. These findings bear on the radiation protection standards to be installed for a general public in manned space flight and on the design of experiments, which intend to contribute to their specification. 相似文献
8.
L W Townsend F A Cucinotta L H Heilbronn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):907-916
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. 相似文献
9.
10.
Studies on clonogenic hemopoietic cells of vertebrate in space: problems and perspectives. 总被引:4,自引:0,他引:4
E I Domaratskaya T V Michurina E I Bueverova E V Bragina T A Nikonova V I Starostin N G Khrushchov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):771-776
Hemopoietic tissues were studied in vertebrates launched aboard the Soviet (Russian) biosatellites ("Cosmos-1129, 1514, 1667, 1887 and 2044"; "Bion-10 and 11") between 1980 and 1996. In the bone marrow of rats exposed to spaceflight conditions, a statistically significant decrease in cell number was revealed in the progenitor cell compartment accounting for the compensatory response of granulocyte-macrophage (CFU-gm) and erythrocyte lineages (BFU-e and CFU-e) and in the compartment of multipotent hemopoietic stem cells (CFU-s), which is responsible for the permanent renewal of hemopoietic tissue. The number of stromal fibroblastic progenitors (CFC-f) in the bone marrow of these rats was also reduced. Apparently, changes in the hemopoietic stroma damage the hemopoietic microenvironment and, hence, may be responsible for changes observed in the hemopoietic tissue proper. Attempts were made to develop methods for analyzing morphologically indiscernible clonogenic hemopoietic cells of newts, and studies on the effects of spaceflight factors on these cells were performed. The results showed that the numbers of clonogenic cells in newts of the flight group newts were significantly lower than in control newts. The data obtained are used as the basis for formulating the problems to be studied, drawing up a program for further research on the effects of spaceflight factors on stem and other clonogenic hemopoietic cells, and developing new experimental models for analyzing stem cells, the state of the hemopoietic stroma, etc. 相似文献
11.
I. Molotov V. Agapov V. Titenko Z. Khutorovsky Yu. Burtsev I. Guseva V. Rumyantsev M. Ibrahimov G. Kornienko A. Erofeeva V. Biryukov V. Vlasjuk R. Kiladze R. Zalles P. Sukhov R. Inasaridze G. Abdullaeva V. Rychalsky V. Kouprianov O. Rusakov E. Litvinenko E. Filippov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(7):1022-1028
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007. 相似文献
12.
I. Fehr S. Deme B. Szab J. Vgvlgyi P.P. Szab A. Csoke M. Rnky Yu.A. Akatov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(14):61-66
A small, portable, vibration and shock resistant thermoluminescent dosimeter system was developed to measure cosmic radiation dose on board a spacecraft. The system consists of a small battery-operated reader and a special bulb dosimeter. Doses from 10 μGy up to 100 mGy can be measured. The electrical power consumption of the reader is about 5 W, its volume is about 1 dm3 and its mass is about 1 kg. Details are given for the construction and technical parameters of the dosimeter and reader. 相似文献
13.
V V Mezhevikin V A Okhonin S I Bartsev J I Gitelson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):135-142
Different versions of manned closed ecosystems (CES) based on photosynthesis of unicellular and/or higher plants and chemosynthesis or bacteria are considered. Different versions of CES have been compared for applying them on Earth, Moon, Mars and Venus orbital stations, for Mars missions and planetary stations as well as to provide high-quality life in extreme conditions on the Earth. In microgravity [correction of mycrogravity] we recommend CES with unicellular organisms based on photosynthesis or chemosynthesis (depending of the availability of the light or electric energy). For the planetary stations with Moon gravity and higher CES with higher plants are recommended. Improvement of indoor air quality by CES biotechnology is considered. 相似文献
14.
15.
Juergen Kiefer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(6):1278-1280
Radiation risk estimate in space is a moral obligation and a scientific challenge requiring the combined efforts of physicists and biologists. This introductory paper presents some thoughts about problems to be solved and the possible directions of research. It stresses the necessity of cooperation across disciplines and the combination of space and ground based investigations. 相似文献
16.
F. Becker B. Seguin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(6):299-317
Climate being the result of many interconnected processes, it can hardly be understood without models which describe these various processes as quantitatively as possible and define the parameters which are relevant for climate studies. Among those, surface processes and therefore surface parameters are now recognized to be of great importance. Some examples are discussed in the first part, showing the great interest to measure the relevant parameters on a multi-year basis, over large areas with sufficiently dense array and on a stable basis, in order to monitor climate changes or to study the impact on climate of the modifications of some relevant parameters which are analysed. Since space observations from satellites fulfil these requirements, it is clear that they will become very soon a fundamental tool for climate studies. Unfortunately, as it is discussed in the second part, satellites do measure only spectral radiances at the top of the atmosphere and the determination of the relevant surface parameters (or fluxes) from these radiances still raises many problems which have to be solved, although many progresses have already been made.The aim of this paper is therefore to review and discuss these problems and the various ways they have been tackled until now. The first part is devoted to an overview of what needs to be measured and why, while the existing methods for determining the most important surface parameters from space observations are presented in the second part where a particular attention is given to the theoretical and experimental validations of these methods, their limits and the problems still to be solved. 相似文献
17.
Y. Negishi A. Hashimoto M. Tsushima C. Dobrota M. Yamashita T. Nakamura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1999,23(12):2029-2032
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly. 相似文献
18.
Instrumentation for plant health and growth in space. 总被引:1,自引:0,他引:1
Y A Berkovitch 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(4-5):157-162
The present-day plant growth facilities ("greenhouses") for space should be equipped with monitors and controllers of ambient parameters within the chamber because spacecraft environmental variations can be unfavorable to plants. Moreover, little is known about the effects of spaceflight on the greenhouse and rooting media. Lack of information about spaceflight effects on plants necessitates supplying space greenhouses with automatic, non-invasive monitors of, e.g., gas exchange rate, water and nutrient ion uptake, plant mass, temperature and water content of leaves. However, introduction of an environmental or plant sensor into the monitoring system may be reasonable only if it is justified by quantitative evaluation of the influence of a measured parameter on productivity, efficacy of illumination, or some other index of greenhouse efficiency. The multivariate adaptive optimization in terrestrial phytotrons appears to be one of the best methods to assess environmental impacts on crops. Two modifications of greenhouses with the three-dimensional adaptive optimization of crop photosynthetic characteristics include: (1) irradiation, air temperature and carbon dioxide using a modified simplex algorithm; and (2) using irradiation, air temperature, and humidity with sensitivity algorithms with varying frequency of test exposures that have been experimentally developed. As a result, during some stages of plant ontogensis, the photosynthetic productivity of wheat, tomatoes, and Chinese cabbage in these systems was found to increase by a factor of 2-3. 相似文献
19.
A. Rouzaud J. J. Favier D. Thvenard 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1988,8(12):49-59
Keeping planar the L/S interface during solidification and controling heat and mass transfers in the liquid phase are 2 important constraints which need to be satisfied to grow suitable single crystals. In the first part of this paper we describe performances of the MEPHISTO instrument which allows :
— On line in-situ measurements of the real undercooling of a solidification front by a non-perturbative thermoelectric method.
— On line supervision of convective motions influence on crystal growth. In the second part, we present the first main results obtained during the ground testing of the space mock-up and we quantify the scientific results accuracy concerning both the onset of the morphological stability and the interface response to unsteady perturbations. 相似文献
20.
R Shimura K Ijiri R Mizuno S Nagaoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2002,30(4):803-808
We studied the effects of accumulated nitrate in water on the spawning, hatching and development of medaka using a simple nitrifying filter and a combined filter having both nitrifying and denitrifying capabilities. A nitrate concentration of 100 mg NO3(-)-N/L was clearly of lethal toxicity to fish when they were exposed to nitrate in both adult and the growing phases. A nitrate concentration of 75 mg NO3(-)-N/L reduced the fertilization rate, delayed the hatching time and reduced the hatching rate of the eggs laid by adults and decreased the growth rate of juveniles. In addition, nitrate accumulations as low as 50 mg NO3(-)-N/L remarkably retarded spawning and lowered the number of eggs laid by fish exposed in the juvenile phase. The effects on the reproduction system may be initiated by a low concentration, approximately 30 mg NO3(-)-N/L. 相似文献