首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
In this paper, we analyzed the thermal and energy characteristics of the plasma components observed during the magnetic dipolarizations in the near tail by the Cluster satellites. It was previously found that the first dipolarization the ratio of proton and electron temperatures (T p/T e) was ~6–7. At the time of the observation of the first dipolarization front T p/T e decreases by up to ~3–4. The minimum value T p/T e (~2.0) is observed behind the front during the turbulent dipolarization phase. Decreases in T p/T e observed at this time are associated with an increase in T e, whereas the proton temperature either decreases or remains unchanged. Decreases of the value T p/T e during the magnetic dipolarizations coincide with increase in wave activity in the wide frequency band up to electron gyrofrequency f ce. High-frequency modes can resonantly interact with electrons causing their heating. The acceleration of ions with different masses up to energies of several hundred kiloelectron-volts is also observed during dipolarizations. In this case, the index of the energy spectrum decreases (a fraction of energetic ions increases) during the enhancement of low-frequency electromagnetic fluctuations at frequencies that correspond to the gyrofrequency of this ion component. Thus, we can conclude that the processes of the interaction between waves and particles play an important role in increasing the energy of plasma particles during magnetic dipolarizations.  相似文献   

2.
An analysis of the electron density measurements (Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle (F10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm–3. Two years later, at F10.7 = 100, Ne ~ 5 × 104 cm–3 and Ne ~2.5 × 104 cm–3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn (By < 0) or dusk side (B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.  相似文献   

3.
Depleted narrow (localized in longitude) regions (field tubes) in the plasmasphere, recently discovered in He+ radiation measurements on the IMAGE spacecraft, were first directly observed by the Magion-5 satellite. The low-density regions (notches) occupy <~ 10–30° in longitude and extend from L ~ 2–3 to the plasmasphere boundary in neighboring plasmasphere regions with larger densities. The Magion-5 data give evidence that in the low-density regions temperature is enhanced as compared to the neighboring denser plasmasphere regions. Formation of notches in the plasmasphere is, apparently, associated with AE intensification during weak magnetic storms, while strong magnetic storms usually result in the overall reduction of plasmasphere dimensions. However, even a strong magnetic storm on April 6–7, 2000 (max K p = 9-and min D st ~ ?290 nT), but accompanied by an isolated AE impulse, resulted in a density decrease only in the longitudinally limited post-midnight sector of the plasmasphere.  相似文献   

4.
Based on the data of the BMSW instrument installed on the of SPEKTR-R spacecraft, as well as according to the data of instruments of the WIND spacecraft, etc., using two examples, the paper has studied the role of ions reflected from the front and associated structural features of quasi-perpendicular interplanetary shocks (IS) with the Alfvén Mach number М A lower than the first critical Mach number М c1 . It has been shown that BSs with the finite parameter 0.1 < β1 < 1 contain a small fraction of reflected protons, which play a significant role in forming the front structure (β1 is the ratio of gas-to-magnetic pressure before the shock front). In particular, in the case of a perpendicular shock recorded on August 24, 2013 (the angle between the magnetic field direction and the normal to the front θBn ≈ 85°), an IS with a small Mach number (МA ≈ 1.4) and small β1 ≈ 0.2 is shown that the interactions of reflected ions with inflowing solar wind may result in the collisionless heating of ions in front of and behind it. The case of the oblique (θBn = 63°) IS on April 19, 2014 with a small Mach number (М A ≈ 1.2) and small β1 ≈ 0.5 has been investigated. It has been found that, before the front, there is a sequence of trains of magnetosonic waves, the amplitude of which decreases to zero upon increasing their distance from the front. The mechanism of their formation is associated with the development of instability caused by the ions reflected from the front.  相似文献   

5.
The results of studies of longitudinal and LT variations in parameters of the ionosphere–plasmasphere system, obtained using the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP), assimilation ionospheric model IRI Real-Time Assimilation Mapping (IRTAM), and satellite and ground-based observational data are presented in the paper. The study of the main morphological features of longitudinal and LT variations in the critical frequency of the ionospheric F2 layer (foF2) and total electron content (TEC) depending on latitude in the winter solstice during a solar-activity minimum (December 22, 2009) is carried out. It is shown that the variations in foF2 and TEC, on the whole, are identical, and so mutually substitutable, while creating empirical models of these parameters in quiet geomagnetic conditions. The longitudinal and LT variations in both foF2 and TEC are within an order of magnitude everywhere except for the equator anomaly region, where LT variation is larger by an order of magnitude than longitudinal variation. According to the results of the study, in the American longitudinal sector at all latitudes of the Southern (summer) Hemisphere, maxima of foF2 and TEC are formed. The near-equatorial and high-latitudinal maxima are separated out from these. The estimate of the contribution into the longitudinal variation in foF2 and TEC for various local time sectors and at various latitudes has been obtained for the first time. In the Southern (summer) Hemisphere, longitudinal variation in foF2 and TEC is formed in the nighttime.  相似文献   

6.
Radio bursts in the frequency range of 100–1500 kHz, recorded in 1997–2000 on the INTERBALL-1 satellite during the solar flares preceding the strong geomagnetic storms with D st < ?100 nT, are analyzed in this paper. The observed long-wave III-type radio bursts of solar origin at frequencies of 1460 and 780 kHz were characterized by large values of the flux S f = 10?15 ?10?17 W/m2 Hz and duration longer than 10 min. The rapid frequency drift of a modulated radio burst continued up to a frequency of 250 kHz, which testified that the exciting agent (a beam of energetic electrons) propagated from the Sun to the Earth. All such flares were characterized by the appearance of halo coronal mass ejections, observed by the LASCO/SOHO, and by the presence of a southward Bz-component of the IMF, measured on the ACE and WIND spacecraft. In addition, shortly after radio bursts, the INTERBALL-1 satellite has recorded the fluxes of energetic electrons with E > 40 keV.  相似文献   

7.
Saturn’s rotation relative to a center of mass is considered within an elliptic restricted three-body problem. It is assumed that Saturn is a solid under the action of gravity of the Sun and Jupiter. The motions of Saturn and Jupiter are considered elliptic with small eccentricities eS and eJ, respectively; the mean motion of Jupiter nJ is also small. We obtain the averaged Hamiltonian function for a small parameter of ε = nJ and integrals of evolution equations. The main effects of the influence of Jupiter on Saturn’s rotation are described: (α) the evolution of the constant parameters of regular precession for the angular momentum vector I2; (β) the occurrence of new libration zones of oscillations I2 near the plane of the celestial equator parallel to the plane of the Jupiter’s orbit; (γ) the occurrence of additional unstable equilibria of vector I2 at the points of the north and south poles of the celestial sphere and, as a result, the existence of homoclinic trajectories; and (δ) the existence of periodic trajectories with arbitrarily large periods near the homoclinic trajectory. It is shown that the effects of (β), (γ), and (δ) are caused by the eccentricity e of the Jupiter’s orbit and are practically independent of Jupiter’s mass (within satellite approximation).  相似文献   

8.
This work is devoted to studying the processes of the acceleration of plasma particles in thin current sheets that appear during magnetospheric substorms in the Earth’s magnetosphere tail. A numerical model of magnetic dipolarization accompanied by plasma turbulence has been constructed and studied. The model allows one to investigate the particle acceleration due to the action of three principal mechanisms: (1) plasma turbulence; (2) magnetic dipolarization; (3) their simultaneous action. For the given velocity kappa-distributions, we obtained energy spectra of three types of accelerated particles, i.e., protons p+, ions of oxygen O+, and electrons e. It has been shown that the combined mechanism of dipolarization with turbulence (3) makes the largest contribution to the increase in the energy of protons and heavy ions as compared with a separate action of each of mechanisms (1) and (2); in this case, electrons accelerate less. The consideration of the joint action of acceleration mechanisms (1) and (2) can explain the apparition of particles with energies on the order of magnitude equal to hundreds keV in the Earth’s magnetosphere tail.  相似文献   

9.
Methods of localizing coronal sources of the solar wind (SW), such as coronal holes, quasi-stationary fluxes from active regions, and transient sources associated with small-scale active phenomena are considered based on vacuum-ultraviolet (EUV) images of the corona at low solar activity during the initial period of the 24th solar cycle (2010). It is shown that a SW velocity profile can be calculated from the relative areas of coronal holes (CH) at the central part of the disk based on the images in the ranges of 193 and 171 Å. The images in the 193 Å describe the geometry of large HCs that represent sources of fast SW well. The images in 171 Å are a better visualization of small CHs, based on which the profile of a slow SW component was calculated to a high accuracy (up to 65 km/s). According to Hinode/EIS data of October 15, 2010, using the Doppler spectroscopy method at the streamer base over the active region 11112, the source of the outgoing plasma flux with the mean velocity of 17 km/s was localized in the magnetic field region with an intensity of less than 200 Gauss. According to the estimate, the density of the plasma flux from this source is an order of magnitude greater than the value required for explaining the distinction between the calculated and measured profiles of a slow SW velocity. For finding the transient SW component based on small-scale flare activity, SW parameters were analyzed for the periods of flares accompanied by coronal mass ejections (CMEs), and for the periods without flares, according to the data obtained in 2010 from the ACE and GOES satellites and by coronagraphs on the STEREO-A and -B spacecraft. The ion ratios C+6/C+5 and O+7/O+6 and the mean charge of Fe ions for periods with flares were shown to be shifted toward large values, suggesting the presence of a hot SW component associated with flare activity. A noticeable correlation between the maximum charge of Fe ions and the peak power of a flare, previously observed for flares of a higher class, was confirmed. The mean value of the SW flux density during the periods of flares was 30% higher than that in the periods without flares, which is possibly associated also with the growth of fluxes from other sources with an increasing solar activity level. Based on the example of a series of flares of October 13–14, 2010, it was supposed that transient SW fluxes from the weak flares at low solar activity can manifest themselves in the form of interplanetary ICME-transients.  相似文献   

10.
In the implementation of the space projects Rosetta and Mars Express, a large-scale series of experiments has been carried out on radio sounding circumsolar plasma by decimeter (S-band) and centimeter (X-band) signals of the Rosetta comet probe (from October 3 to October 31, 2010) and the Mars Express satellite of Mars (from December 25, 2010 to March 27, 2011). It was found that in the phase of ingress the spacecraft behind the Sun, the intensity of the frequency fluctuations increases in accordance with a power function whose argument is the solar offset distance of radio ray path, and when the spacecraft is removed from the Sun (the egress phase), frequency fluctuations are reduced. Periodic strong increases in the fluctuation level, exceeding by a factor of 3–12 the background values of this value determined by the regular radial dependences, are imposed on the regular dependences. It was found that increasing the fluctuations of radio waves alternates with the periodicity m × T or n × T, where m = 1/2, n = 1, аnd T is the synodic period of the Sun’s rotation (T ≈ 27 days). It was shown that the corotating structures associated with the interaction regions of different speed fluxes are formed in the area of solar wind acceleration and at distances of 6–20 solar radii already have a quasi-stationary character.  相似文献   

11.
Planar orbits of three-dimensional restricted circular three-body problem are considered as a special case of three-dimensional orbits, and the second-order monodromy matrices M (in coordinate z and velocity v z ) are calculated for them. Semi-trace s of matrix M determines vertical stability of an orbit. If |s| ≤ 1, then transformation of the subspace (z, v z ) in the neighborhood of solution for the period is reduced to deformation and a rotation through angle φ, cosφ = s. If the angle ? can be rationally expressed through 2π,φ = 2π·p/q, where p and q are integer, then a planar orbit generates the families of three-dimensional periodic solutions that have a period larger by a factor of q (second kind Poincareé periodic solutions). Directions of continuation in the subspace (z, v z ) are determined by matrix M. If |s| < 1, we have two new families, while only one exists at resonances 1: 1 (s = 1) and 2: 1 (s = ?1). In the course of motion along the family of three-dimensional periodic solutions, a transition is possible from one family of planar solutions to another one, sometimes previously unknown family of planar solutions.  相似文献   

12.
The paper has presented a study of the dependence of the H+ ions concentration in the plasmasphere on geographic longitude. A vast database of measurements of the cold plasma density by the Alpha-3 instrument on board the INTERBALL-1 satellite has been used for the study. Based on these measurements, a dependence of the H+ ions concentration in the filled magnetic flux tube in the plasmasphere in the equatorial plane under quiet geomagnetic conditions has been obtained as a function of geographic longitude. Studies have been performed for two seasons, summer and winter. It has been shown that, during the summer in the near-midnight sector, the minimum in the H+ concentration falls within geographic longitudes of 270°–315°. The ratio of the concentration of H+ ions at various longitudes could reach a factor of three. During the winter, in the near-noon sector, the maximum of the H+ ions concentration falls within longitudes of 180°–225°, whereas the concentration ratio could reach a factor of 2.2.  相似文献   

13.
A brief review is given of contemporary approaches to solving the problem of medium-term forecast of the velocity of quasi-stationary solar wind (SW) and of the intensity of geomagnetic disturbances caused by it. At the present time, two promising models of calculating the velocity of quasi-stationary SW at the Earth’s orbit are realized. One model is the semi-empirical model of Wang-Sheeley-Arge (WSA) which allows one to calculate the dependence V(t) of SW velocity at the Earth’s orbit using measured values of the photospheric magnetic field. This model is based on calculation of the local divergence f S of magnetic field lines. The second model is semi-empirical model by Eselevich-Fainshtein-Rudenko (EFR). It is based on calculation in a potential approximation of the area of foot points on the solar surface of open magnetic tubes (sources of fast quasistationary SW). The new Bd-technology is used in these calculations, allowing one to calculate instantaneous distributions of the magnetic field above the entire visible surface of the Sun. Using predicted V(t) profiles, one can in EFR model calculate also the intensity of geomagnetic disturbances caused by quasi-stationary SW. This intensity is expressed through the K p index. In this paper the EFR model is discussed in detail. Some examples of epignosis and real forecast of V(t) and K p (t) are discussed. A comparison of the results of applying these two models for the SW velocity forecasting is presented.  相似文献   

14.
Based on the comparison of solar activity indices (annual average values of the relative number of sunspots Rz12 and solar radio emission flux at a wavelength of 10.7 cm F12) with the ionospheric index of solar activity IG12 for 1954–2013, we have found that the index F12 is a more accurate (than Rz12) indicator of solar activity for the long-term forecast of foF2 (the critical frequency of the F2-layer). This advantage of the F12 index becomes especially significant after 2000 if the specific features of extreme ultraviolet radiation of the Sun are additionally taken into account in the minima of solar cycles, using an appropriate correction to F12. Qualitative arguments are given in favor of the use of F12 for the long-term forecast of both foF2 and other ionospheric parameters.  相似文献   

15.
This work is a continuation of investigation [1] of the behavior of the solar wind’s and interplanetary magnetic field’s parameters near the onset of geomagnetic storms for various types of solar wind streams. The data of the OMNI base for the 1976–2000 period are used in the analysis. The types of solar wind streams were determined, and the times of beginning (onsets) of magnetic storms were distributed in solar wind types as follows: CIR (121 storms), Sheath (22 storms), MC (113 storms), and “uncertain type” (367 storms). The growth of variations (hourly standard deviations) of the density and IMF magnitude was observed 5–10 hours before the onset only in the Sheath. For the CIR-, Sheath-and MC-induced storms the dependence between the minimum of the IMF B z-component and the minimum of the D st -index, as well as the dependence between the electric field E y of solar wind and the minimum of the D st -index are steeper than those for the “uncertain” solar wind type. The steepest D st vs. B z dependence is observed in the Sheath, and the steepest D st vs. E y dependence is observed in the MC.  相似文献   

16.
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at ~8.5RE and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of ~10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of ~90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the Bz component of the magnetic field on the satellite. Approximately 30–50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.  相似文献   

17.
Results of the analysis of 327 sessions of radio occultation on satellite-to-satellite paths are presented. The data are taken in the nighttime polar ionosphere in the regions with latitudes of 67°–88°, and in the period of high solar activity from October 26, 2003 to November 9, 2003. Typical ionospheric changes in the amplitude and phase of decimeter radio waves on paths GPS satellites-CHAMP satellite are presented. It is demonstrated that these data make it possible to determine characteristics of the sporadic E s structures in the lower ionosphere at heights of 75–120 km. Histograms of distribution of the lower and upper boundaries, thickness, and intensity of the E s structures are presented. Dispersion and spectra of amplitude fluctuations of decimeter radio waves caused by small-scale irregularity of the ionospheric plasma are analyzed. The relation of the polar E s structures and intensity of small-scale plasma irregularity to various manifestations of solar activity is discussed. The efficiency of monitoring the ionospheric disturbances caused by shock waves of the solar wind by the radio occultation method on satellite-to-satellite paths is demonstrated.  相似文献   

18.
The paper is devoted to discussing the method of measuring the accumulation of radioactive isotopes 53Mn (with a half-life T = 3.7 million years) and 10Be (T = 2.5 million years) in iron-bearing rocks. Knowledge of the dynamics of the accumulation of these isotopes would allow us to estimate the variations in the intensity of cosmic rays, periods of glaciations and geological changes, as well as climatic processes on the Earth in retrospect of 0.1–10 million years. For an operative study of a large number of samples, it has been proposed to use a low-cost neutron activation method with the implementation of the 53Mn(n, γ)54Mn reaction in a slow neutron reactor. As has been shown, using the 10Be isotope together with 53Mn makes it possible to simultaneously determine both the cosmic-ray fluxes and the shielding time of the corresponding region from cosmic radiation. To obtain the reliable data on cosmic rays, it has been proposed to study rock samples from the lunar surface.  相似文献   

19.
Five hot flow anomalies (HFA) recorded by the Tail Probe of the INTERBALL satellite in 1996 are analyzed in present work. For the five chosen events the authors determined the characteristics of current sheets whose interaction with the bow shock front led to formation of an HFA, as well as the directions of external electric fields and the directions of motion of these HFAs over a shock front. The analysis of plasma convection in an HFA body is carried out; the average velocities of plasma motion in the HFA are determined in a coordinate system linked with the normal to a current layer and with the normal to the bow shock. According to the character of plasma convection in an HFA body, these five events may be divided into two types, which also differ in the direction of the motion over the front of the bow shock. In the first-type HFAs, the convection of plasma has a component directed from the intermediate region confirming its identification as a source of energy for the formation of an HFA. In the second-type HFAs, plasma motion from the intermediate region in leading and trailing parts is less expressed. This fact, as well as the great variation of peculiar velocities in the body of anomalies, allowed the assumption that second-type anomalies are nonstationary. Evidence is presented that the anomalies considered in the paper are bordered with shocks formed in solar wind passing a large-scale, decelerated body of heated plasma.  相似文献   

20.
Energetic solar proton events within the energy interval 1–48 MeV at the stage of their decay are considered over the period of 1974–2001. The dependence of the characteristic decay time on the proton energy in the assumed power-law representation τ(E) =E ?n is analyzed for the events with an exponential decay form. The dependence of n on the heliolongitude of the flare (the particles source on the Sun) is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号