共查询到20条相似文献,搜索用时 0 毫秒
1.
The multilayered structure of the European airport network (EAN), composed of con-nections and flights between European cities, is analyzed through the k-core decomposition of the connections network. This decomposition allows to identify the core, bridge and periphery lay-ers of the EAN. The core layer includes the best-connected cities, which include important business air traffic destinations. The periphery layer includes cities with lesser connections, which serve low populated areas where air travel is an economic alternative. The remaining cities form the bridge of the EAN, including important leisure travel origins and destinations. The multilayered structure of the EAN affects network robustness, as the EAN is more robust to isolation of nodes of the core, than to the isolation of a combination of core and bridge nodes. 相似文献
2.
The Chinese air transport system has witnessed an important evolution in the last dec-ade, with a strong increase in the number of flights operated and a consequent reduction of their punctuality. In this contribution, we propose modelling the process of delay propagation by using complex networks, in which nodes are associated to airports, and links between pairs of them are assigned when a delay propagation is detected. Delay time series are analysed through the well-known Granger Causality, which allows detecting if one time series is causing the dynamics observed in a second one. Results indicate that delays are mostly propagated from small and regio-nal airports, and through flights operated by turbo-prop aircraft. These insights can be used to design strategies for delay propagation dampening, as for instance by including small airports into the system's Collaborative Decision Making. 相似文献
3.
The world airport network (WAN) is one of the networked infrastructures that shape today's economic and social activity,so its resilience against incidents affecting the WAN is an important problem.In this paper,the robustness of air route networks is extended by defining and testing several heuristics to define selection criteria to detect the critical nodes of the WAN.In addition to heuristics based on genetic algorithms and simulated annealing,custom heuristics based on node damage and node betweenness are defined.The most effective heuristic is a multiattack heuristic combining both custom heuristics.Results obtained are of importance not only for advance in the understanding of the structure of complex networks,but also for critical node detection. 相似文献
4.
《中国航空学报》2022,35(12):189-199
The integrated aviation and High-Speed Railway (HSR) transportation system plays a vital role for today’s inter-city transportation services. However, an increasing number of unexpected disruptions (such as operation failures, natural disasters, or intentional attacks) pose a considerable threat to the normal operation of the system, especially on ground transfer, leading to the extensive research on its vulnerability. Previous approaches mainly focus on interruptions within a single transportation mode, neglecting the role of ground transfer which serves as a coupled connection between aviation and High-Speed Railway. This paper proposes a network-based framework for evaluating the vulnerability of the Chinese Coupled Aviation and High-Speed Railway (CAHSR) network from the viewpoint of ground transfer interruption. Taking the end-to-end travel time and passenger flow information into consideration as an evaluation measure and analyzing from the perspective of urban agglomerations, an adaptive method is developed to identify the critical cities and further investigate their failure impacts on the geographic distribution of vulnerability. In addition, the proposed model explores variations of vulnerability under different failure time intervals. Based on the empirical study, some major conclusions are highlighted as follows: (A) Only a few cities show significant impacts on the network’s vulnerability when ground transfer interruptions occurred. (B) The distribution of vulnerability is not proportional to the distance between failure city and influenced city. (C) The vulnerability is more serious in the morning and evening when the ground transfer is disconnected. Our findings may provide new insights for maintenance and optimization of the CAHSR network and other real-world transportation networks. 相似文献
5.
Luis E.C. Rocha 《中国航空学报》2017,30(2)
Air transport systems are highly dynamic at temporal scales from minutes to years. This dynamic behavior not only characterizes the evolution of the system but also affect the system's functioning. Understanding the evolutionary mechanisms is thus fundamental in order to better design optimal air transport networks that benefits companies, passengers and the environment. In this review, we briefly present and discuss the state-of-the-art on time-evolving air transport net-works. We distinguish the structural analysis of sequences of network snapshots, ideal for long-term network evolution (e.g. annual evolution), and temporal paths, preferred for short-term dynamics (e.g. hourly evolution). We emphasize that most previous research focused on the first modeling approach (i.e. long-term) whereas only a few studies look at high-resolution temporal paths. We conclude the review highlighting that much research remains to be done, both to apply already available methods and to develop new measures for temporal paths on air transport networks. In particular, we identify that the study of delays, network resilience and optimization of resources (aircraft and crew) are critical topics. 相似文献
6.
《中国航空学报》2023,36(5):406-420
A reasonable parameter configuration helps improve the data transmission performance of the Licklider Transmission Protocol (LTP). Previous research has focused mainly on parameter optimization for LTP in simplified scenarios with one to two hops or multihop scenarios with a custody mechanism of the Bundle Protocol (BP). However, the research results are not applicable to communications in Complex Deep Space Networks (CDSNs) without the custody mechanism of BP that are more suitable for deep space communications with LTP. In this paper, we propose a model of file delivery time for LTP in CDSNs. Based on the model, we propose a Parameter Optimization Design Algorithm for LTP (LTP-PODA) of configuring reasonable parameters for LTP. The results show that the accuracy of the proposed model is at least 6.47% higher than that of the previously established models based on simple scenarios, and the proposed model is more suitable for CDSNs. Moreover, the LTP parameters are optimized by the LTP-PODA algorithm to obtain an optimization plan. Configuring the optimization plan for LTP improves the protocol transmission performance by at least 18.77% compared with configuring the other parameter configuration plans. 相似文献
7.
Robustness of transportation networks is one of the major challenges of the 21st century. This paper investigates the resilience of global air transportation from a complex network point of view, with focus on attacking strategies in the airport network, i.e., to remove airports from the sys-tem and see what could affect the air traffic system from a passenger's perspective. Specifically, we identify commonalities and differences between several robustness measures and attacking strate-gies, proposing a novel notion of functional robustness: unaffected passengers with rerouting. We apply twelve attacking strategies to the worldwide airport network with three weights, and eval-uate three robustness measures. We find that degree and Bonacich based attacks harm passenger weighted network most. Our evaluation is geared toward a unified view on air transportation net-work attack and serves as a foundation on how to develop effective mitigation strategies. 相似文献
8.
Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system. Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges, and hence the solution of this model is the set of vital edges. Counterintuitively, our results show that the most vital edges are not necessarily the edges of the highest topological importance, for which we provide an extensive explanation from the microscope view. Our findings also offer new insights to understanding and optimizing other real-world network systems. 相似文献
9.
居建国%李文晓%薛元德%黄维悦 《宇航材料工艺》2007,37(4):58-60
对两端收口复合绝热管进行了工艺方案分析,确定气囊成型工艺为优选工艺方案,在此基础上阐述了气囊成型工艺设计的原则,依据这个原则开展了典型样件的研制.结果表明:方案选择合理,工艺设计完整、可靠,产品满足各项指标要求. 相似文献
10.
Mark Azzam 《中国航空学报》2017,30(2)
Analyzing airports' role in global air transportation and monitoring their development over time provides an additional perspective on the dynamics of network evolution. In order to understand the different roles airports can play in the network an integrated and multi-dimensional approach is needed. Therefore, an approach to airport classification through hierarchi-cal clustering considering several parameters from network theory is presented in this paper. By applying a 29 year record of global flight data and calculating the conditional transition probabil-ities the results are displayed as an evolution graph similar to a discrete-time Markov chain. With this analytical concept the meaning of airports is analyzed from a network perspective and a new airport taxonomy is established. The presented methodology allows tracking the development of airports from certain categories into others over time. Results show that airports of equal classes run through similar stages of development with a limited number of alternatives, indicating clear evolutionary patterns. Apart from giving an overview of the results the paper illustrates the exact data-driven approach and suggests an evaluation scheme. The methodology can help the public and industry sector to make informed strategy decisions when it comes to air transportation infras-tructure. 相似文献
11.
With the flourishing development of Unmanned Aerial Vehicles (UAVs), the mission tasks of UAVs have become more and more complex. Consequently, a Real-Time Operating System (RTOS) that provides operating environments for various mission services on these UAVs has become crucial, which leads to the necessity of having a deep understanding of an RTOS. In this paper, an empirical study is conducted on FreeRTOS, a commonly used RTOS for UAVs, from a complex network perspective. A total of 85 releases of FreeRTOS, from V2.4.2 to V10.0.0, are modeled as directed networks, in which the nodes represent functions and the edges denote function calls. It is found that the size of the FreeRTOS network has grown almost linearly with the evolution of the versions, while its main core has evolved steadily. In addition, a k-core analysis-based metric is proposed to identify major functionality changes of FreeRTOS during its evolution. The result shows that the identified versions are consistent with the version change logs. Finally, it is found that the clustering coefficient of the Linux OS scheduler is larger than that of the FreeRTOS scheduler. In conclusion, the empirical results provide useful guidance for developers and users of UAV RTOSs. 相似文献
12.
Vulnerability analysis for airport networks based on fuzzy soft sets: From the structural and functional perspective 总被引:1,自引:0,他引:1
Recently,much attention has been paid to the reliability and vulnerability of critical infrastructure.In air traffic systems,the vulnerability analysis for airport networks can be used to guide air traffic administrations in their prioritization of the maintenance and repair of airports,as well as to avoid unnecessary disturbances in the planning of flight schedules.In this paper,the evaluation methods of airport importance and network efficiency are established.Firstly,the evaluation indices of airport importance are proposed from both the topological and functional perspectives.The topological characteristics come from the structure of airport network and the functional features stem from the traffic flow distribution taking place inside the network.Secondly,an integrated evaluation method based on fuzzy soft set theory is proposed to identify the key airports,which can fuse together importance indices over different time intervals.Thirdly,an airport network efficiency method is established for the purpose of assessing the accuracy of the evaluation method.Finally,empirical studies using real traffic data of US and China’s airport networks show that the evaluation method proposed in this paper is the most accurate.The vulnerability of US and China’s airport networks is compared.The similarities and differences between airport geography distribution and airport importance distribution are discussed here and the dynamics of airport importance is studied as well. 相似文献
13.
机场协同决策可以有效提升机场的运行效率,进而提升整个民航运输网络的运行效率。本文查阅整理了机场协同决策的相关标准、政策文件与研究论文,梳理了机场协同决策的发展历程以及国内外学界业界有关协同决策的研究及应用现状;分析讨论了机场协同决策未来的发展趋势与当前时期协同决策所面临的挑战;同时基于我国的实际情况,给出了一些机场协同决策的发展建议;总结了机场协同决策的理论与应用价值以及协同决策在我国面临的问题与挑战。本文研究可以为提升机场与整个航空交通网络的运行效率与经济效益提供理论支撑和依据。 相似文献
14.
《中国航空学报》2021,34(2):466-478
With the development of Unmanned Aerial Vehicle (UAV) system autonomy, network communication technology and group intelligence theory, mission execution in the form of a UAV swarm will be an important realization of future applications. Traditional single-UAV mission reliability modeling methods have been unable to meet the requirements of UAV swarm mission reliability modeling. Therefore, the UAV swarm mission reliability modeling and evaluation method is proposed. First, aimed at the interdependence among the multiple layers, a multi-layer network model of a UAV swarm is established. At the same time, based on the system having the following characteristics—using a mission chain to complete the mission and applying the connectivity of the mission network—the mission network model of a UAV swarm is established. Second, vulnerability and connectivity are selected as two indicators to reflect the reliability of the mission, and aimed at random attack and deliberate attack, vulnerability and connectivity evaluation methods are proposed. Finally, the validity and accuracy of the constructed model are verified through simulations, and the model and selected indicators can meet the reliability requirements of the UAV swarm mission. In this way, this study provides quantitative reference for UAV-swarm-related decision-making work and supports the development of UAV-swarm-related work. 相似文献
15.
Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic con gestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas (PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors (NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in mainland China is collected as the origin-destination (OD) air port pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety. 相似文献
16.
为有效管制战区空域,确保航空军事运输活动安全、高效、有序进行,针对不考虑限制空域的穿越走廊基本网络规划问题,构建了SUMApHMP数学模型,并结合Floyd最短路径算法提出了一种求解该模型的混合禁忌搜索算法,进而根据SUMApHMP求解结果设计了不考虑限制空域的穿越走廊基本网络。利用空战场中10个机场之间的流量矩阵和距离矩阵对混合禁忌算法进行了测试,并将Lingo 9.0软件对模型的优化结果与本文算法求得的结果进行了比较,验证了算法的可行性和有效性。 相似文献
17.
Prognostics and Health Management (PHM) has become a very important tool in modern commercial aircraft. Considering limited built-in sensing devices on the legacy aircraft model, one of the challenges for airborne system health monitoring is to find an appropriate health indicator that is highly related to the actual degradation state of the system. This paper proposed a novel health indicator extraction method based on the available sensor parameters for the health monitoring of Air Conditioning System (ACS) of a legacy commercial aircraft model. Firstly, a specific Airplane Condition Monitoring System (ACMS) report for ACS health monitoring is defined. Then a non-parametric modeling technique is adopted to calculate the health indicator based on the raw ACMS report data. The proposed method is validated on a single-aisle commercial aircraft widely used for short and medium-haul routes, using more than 6000 ACMS reports collected from a fleet of aircraft during one year. The case study result shows that the proposed health indicator can effectively characterize the degradation state of the ACS, which can provide valuable information for proactive maintenance plan in advance. 相似文献
18.
《中国航空学报》2020,33(2):634-663
The determination of optimal aerial transport networks and their associated flight frequencies is crucial for the strategic planning of airlines, as well as for carrying out market research, to establish target markets, and for aircraft and crew rostering. In addition, optimum airplane types for the selected networks are crucial to improve revenue and to provide reduced operating costs. The present study proposes an innovative approach to determine the optimal aerial transport network simultaneously with the determination of the optimum fleet for that network, composed of three types of airplanes (network and vehicle integrated design). The network profit is maximized. The passenger’s demands between the airports are determined via a gravitational model. An embedded linear programming solution is responsible for obtaining potential optimal network configurations. The optimum fleet combination is determined from a database of candidate aircraft designs via genetic algorithm. A truly realistic airplane representation is made possible thanks to accurate surrogate models for engine and aerodynamics is adopted. An accurate engine deck encompassing a compression map and an innovative engine weight calculation besides an aerodynamical artificial neural network module enable a high degree of accuracy for the mission analysis. The proposed methodology is applied to obtain the optimum network comprised of twenty main Brazilian airports and corresponding fleet. 相似文献
19.
This paper develops a routing algorithm for delay-sensitive packet transmission in a low earth orbit multi-hop satellite network consists of micro-satellites. The micro-satellite low earth orbit(MS-LEO) network endures unstable link connection and frequent link congestion due to the uneven user distribution and the link capacity variations. The proposed routing algorithm,referred to as the utility maximizing routing(UMR) algorithm, improve the network utility of the MS-LEO network for carrying flows with strict end-to-end delay bound requirement. In UMR, first, a link state parameter is defined to capture the link reliability on continuing to keep the end-to-end delay into constraint; then, on the basis of this parameter, a routing metric is formulated and a routing scheme is designed for balancing the reliability in delay bound guarantee among paths and building a path maximizing the network utility expectation. While the UMR algorithm has many advantages, it may result in a higher blocking rate of new calls. This phenomenon is discussed and a weight factor is introduced into UMR to provide a flexible performance option for network operator. A set of simulations are conducted to verify the good performance of UMR, in terms of balancing the traffic distribution on inter-satellite links, reducing the flow interruption rate,and improving the network utility. 相似文献
20.
A multi-path routing algorithm based on network coding is proposed for combating long propagation delay and high bit error rate of space information networks. On the basis of traditional multi-path routing, the algorithm uses a random linear network coding strategy to code data pack- ets. Code number is determined by the next hop link status and the number of current received packets sent by the upstream node together. The algorithm improves retransmission and cache mechanisms through using redundancy caused by network coding. Meanwhile, the algorithm also adopts the flow distribution strategy based on time delay to balance network load. Simulation results show that the proposed routing algorithm can effectively improve packet delivery rate, reduce packet delay, and enhance network performance. 相似文献