共查询到20条相似文献,搜索用时 15 毫秒
1.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1986,6(1):57-61
The aim of this work is the analysis of nonlinear waves propagating across the magnetic field with βi = 8ρnTi/B2 > m/M, when dispersion is connected with the larmor radius of ions. Nonlinear equations obtained for this case are analysed using Whitham method. 相似文献
2.
G.L. Huang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1191-1194
Coronal magnetic field and nonthermal electrons are very important parameters for understanding of the global heliophysical processes. A flare on November 1, 2004 is selected for self-consistent calculations of coronal magnetic field parallel and perpendicular to the line-of-sight, and density of nonthermal electrons from Nobeyama observations. Both of the diagnosis methods and results are discussed in this paper. 相似文献
3.
A. Shalchi B. Weinhorst 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
One- and two-dimensional models of magnetic field fluctuations and turbulence are widely used in space-, astrophysical, and laboratory contexts. In the present article we use a generalized form of the turbulence wave spectrum to calculate field line diffusion coefficients analytically and numerically. General conditions are derived for which field line wandering behaves subdiffusively, diffusively, and superdiffusively. 相似文献
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(4):579-585
We present a Monte-Carlo technique to study the time-dependent transport of energetic particles in the interplanetary medium. We use the guiding center approximation between discrete finite pitch-angle scatterings to quantify the competing effects of focusing and pitch-angle scattering on energetic particles propagating along a Parker spiral magnetic field. We consider that the pitch-angle scattering process is produced by small-scale magnetic field irregularities frozen in the expanding solar wind. We also include the effects of both solar wind convection and adiabatic deceleration. We use a joint probability distribution P(h, μ′) = p(h; μ′)q(μ′; μ) to describe both the distance traveled by the particle between two scattering processes and the change in the particle pitch-angle after a scattering process. Here, p(h; μ′) is the conditional probability that the particle travels a distance h along the field line before the next scattering if it had a pitch-angle cosine μ′ after the previous scattering, and q(μ′; μ) is the conditional probability for the pitch-angle cosine μ′ if the pitch-angle cosine was μ before the scattering. We consider several functional forms to describe the processes of pitch-angle scattering, such as an isotropic scattering without any memory of the initial particle’s pitch-angle or processes in which the scattering result depends upon the initial particle’s pitch-angle. The results of our simulations are pitch-angle distributions and time-intensity profiles that can be directly compared to spacecraft observations. Comparison of our simulations with near-relativistic (45–290 keV) electron events observed by the Electron, Proton and Alpha Monitor on board the Advanced Composition Explorer allows us to estimate both the time dependence of the injection of near-relativistic electrons into the interplanetary medium and the conditions for electron propagation along the interplanetary magnetic field. 相似文献
5.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(4):586-596
An overview is given on what we know about the cosmic ray diffusion process from the modelling of low-energy (MeV) electron transport in the heliosphere. For energies below ∼300 MeV, these electrons give a direct indication of the average mean free paths because they do not experience large adiabatic energy changes and their modulation is largely unaffected by global gradient and curvature drifts. Apart from galactic cosmic ray electrons, the jovian magnetosphere at ∼5 AU in the ecliptic plane is also a relatively strong source of MeV electrons, with energies up to ∼30 MeV. Therefore, when modelling the transport of these particles in the inner heliosphere, a three-dimensional treatment is essential. By comparing these models to observations from the Ulysses, Pioneer and Voyager missions, important conclusions can be made on e.g., the relative contributions of the galactic and jovian electrons to the total electron intensity, the magnitude of the parallel and perpendicular transport coefficients, and the time dependant treatment thereof. 相似文献
6.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(9):1427-1431
A collapsing trap in the cusp topology of solar flares is simulated using a 2D MHD model. Then in this collapsing trap trajectories of test electrons and their acceleration are studied in detail. In the model we use the test particle technique with the guiding centre approximation including also collisional losses and scattering of test electrons. Computing the X-ray emission of the accelerated electrons it is shown that the acceleration process in the collapsing trap easily explains the formation of observed loop-top X-ray sources. 相似文献
7.
Maria S. Pulinets Elizaveta E. Antonova Maria O. Riazantseva Svetlana S. Znatkova Igor P. Kirpichev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Crossings of the magnetopause near the subsolar point are analyzed using data of THEMIS mission. Variations of the magnetic field near magnetopause measured by one of THEMIS satellites are studied and compared with simultaneous measurements in the solar wind by another THEMIS satellite. The time delay of the solar wind arrival at the subsolar point of the magnetopause is taken into account. 30 and 90 s averaging of the magnetic field in the magnetosheath is produced. The results of averaging are compared with the results of measurements in the solar wind before the bow shock and foreshock. It is shown, that Bx component of the magnetic field near magnetopause is near to zero, which supports the possibility to consider the magnetopause as the tangential discontinuity. Comparatively good correlation of By component in the solar wind and near the magnetopause is observed. The correlation of Bz component near the magnetopause and IMF is practically absent, the sign of the Bz near the subsolar point does not coincide with the sign of IMF Bz in ∼30% cases. 相似文献
8.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(4):636-642
The heliospheric magnetic field plays a key role in any model for the modulation of cosmic rays. It enters into all diffusion coefficients, and its magnitude, spatial gradient and direction determine drifts patterns of cosmic rays in the heliosphere. While the first axisymmetric model of E.N. Parker proved quite successful to explain in situ measurements in the ecliptic plane, new insight into the origin and the nature of the field, especially at high heliographic latitudes, has led to the development of complex fully-three-dimensional, time-dependent models. In this review, we discuss a selection of models for the heliospheric magnetic field, and discuss how some of the more recent Fisk-type models affect the modulation of cosmic rays. 相似文献
9.
C.T. Russell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(7):173-176
A pair of programs, entitled BANAL and TANAL, have been created in the UCLA Space Sciences Group for the interactive analysis of magnetic field data. These programs reduce the time from the inception of an idea to its testing, and thereby enhance both the productivity and creativity of the user. They accomplish this through menu-driven procedures for the display and analysis of time series data, including Fourier analysis. Cursor selection of sub-sections of the data for entry into the analysis procedures as well as automatic scaling minimize the required keyboard input from the user. 相似文献
10.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(4):625-635
It is well known that the irregularities of the magnetic field are intimately related to the motion of charged particles. Although transport theories need the spatial and time variations of the magnetic field as input, in situ observations are very limited. Ulysses observations have provided a major step forward by entering the unexplored high latitude regions of the heliosphere, the knowledge of which is vital to interpret particle flux measurements, even at the ecliptic. We analyze the magnetic field data of Ulysses during the mission to study the waves and discontinuities in the heliosphere at different locations, covering a total sunspot cycle. Various tools are employed, including power spectral and structure function analysis. A remarkable difference was found between the fluctuations in the fast and slow solar wind. We argue that the latitudinal extent of the high speed solar wind contributes significantly to the latitudinal variation of the transport parameters, which should also affect the 11 (and 22) year modulation cycle. 相似文献
11.
R. Jarvinen E. Kallio I. Sillanpää P. Janhunen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(9):1361-1374
This study presents comparisons between the Pioneer Venus Orbiter (PVO) magnetometer (OMAG) observations and the HYB-Venus hybrid simulation code. The comparisons are made near periapsides of four PVO orbits using the full resolution PVO/OMAG data. Also, the statistics of the solar wind and interplanetary magnetic field (IMF) conditions at Venus are studied using the PVO interplanetary dataset. The statistics include the histograms and the probability density maps of the selected upstream parameters. The confidence intervals derived from the upstream statistics demonstrate the nominal simulation input parameter space. Moreover, the probability density maps give the dependencies between the upstream parameters. The comparisons between the simulation code and the data along the spacecraft trajectory show that the basic, large scale, trends seen in the magnetic field can be understood by the current simulation runs. The discrepancies between the simulation and the data were found to arise at low altitudes close to the planetary ionosphere in the region which cannot be resolved in detail by the grid size of the runs. 相似文献
12.
E. Kallio P. Janhunen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,33(12):2176-2181
The interaction between the solar wind and Mercury is anticipated to be unique because of Mercury’s relatively weak intrinsic magnetic field and tenuous neutral exosphere. In this paper the role of the IMF in determining the structure of the Hermean magnetosphere is studied using a new self-consistent three-dimensional quasi-neutral hybrid model. A comparison between a pure northward and southward IMF shows that the general morphology of the magnetic field, the position and shape of the bow shock and the magnetopause as well as the density and velocity of the solar wind in the magnetosheath and in the magnetosphere are quite similar in these two IMF situations. A Parker spiral IMF case, instead, produces a magnetosphere with a substantial north–south asymmetric plasma and magnetic field configuration. In general, this study illustrates quantitatively the role of IMF when the solar wind interacts with a weakly magnetised planetary body. 相似文献
13.
Nikolai V. Pogorelov Jacob Heerikhuisen Gary P. Zank Jeremy J. Mitchell Iver H. Cairns 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(11):1337-1344
We discuss the asymmetry of the heliospheric discontinuities obtained from the analysis of 3D modeling of the solar wind (SW) interaction with local interstellar medium (LISM). The flow of charged particles is governed by the ideal MHD equations and the flow of neutral particles is described by the Boltzmann equation. The emphasis is made on the asymmetries of the termination shock (TS) and the heliopause under the combined action of the interstellar and interplanetary magnetic fields (ISMF and IMF) in the presence of neutral hydrogen atoms whose transport through the heliosphere is modeled kinetically, using a Monte Carlo approach. We show that the deflection of neutral hydrogen flow from its original direction in the unperturbed LISM is highly anisotropic and evaluate a possible angle between the hydrogen deflection plane measured in the SOHO SWAN experiment and the plane containing the ISMF and LISM velocity vectors for different ISMF strengths. It is shown that the ISMF of a strength greater than 4 μG can account for the 10 AU difference in the TS heliocentric difference observed during its crossing by the Voyager 1 and Voyager 2 spacecraft, which however results in a larger discrepancy between the calculated and observed velocity distributions. The effect of a strong ISMF on the distribution of plasma quantities in the inner heliosheath and on 2–3 kHz radio emission is discussed. 相似文献
14.
Yu Gao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The systematic investigation of the three components of the magnetic field is made on 6629 vector magnetograms obtained with the Solar Magnetic Field Telescope at Huairou Solar Observing Station over 18 years 1988–2005. The sign distribution of these values has been analyzed over the solar hemispheres and the solar activity cycle as follows: 相似文献
15.
Shenggao Yang Libin Weng Yaguang Zhu Xu Yang Sihui Hu Peikang Xu Huan Zhang Weidong Pan Jie Shang Xing Su 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(1):46-55
We used the TEC (Total electron content) data of 5 min resolution obtained from the Madrigal database during solar-maximum winter (Nov. 6, 2000–Feb. 4, 2001) to study statistically the polar ionospheric plasma distribution response to different intensity and orientation of IMF By/Bz components. The sunlit high-density plasma extension from dayside to nightside is favored in negative IMF By and Bz conditions. With the magnitude of the negative Bz increasing, the time range corresponding to the distinct high-density extension feature expands, and the plasma density along the extension path enhances, which can be attributed to the interaction between dayside solar-produced ionization whose poleward limit is decided by terminator and convection extent mainly modulated by IMF Bz component. As for IMF By component influence on the sunlit plasma extension, the combination effect of convection and corotation electric fields is necessary to be considered. 相似文献
16.
Vipin K. Yadav Nandita Srivastava S.S. Ghosh P.T. Srikar Krishnamoorthy Subhalakshmi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):749-758
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft. 相似文献
17.
M.J. Hagyard R.L. Moore A.G. Emslie 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(7):71-80
We present observational results and their physical implications garnered from the deliberations of the FBS Magnetic Shear Study Group on magnetic field shear in relation to flares. The observed character of magnetic shear and its involvement in the buildup and release of flare energy are reviewed and illustrated with emphasis on recent results from the Marshall Space Flight Center vector magnetograph. It is pointed out that the magnetic field in active regions can become sheared by several processes, including shear flow in the photosphere, flux emergence, magnetic reconnection, and flux submergence. Modeling studies of the buildup of stored magnetic energy by shearing are reported which show ample energy storage for flares. Observational evidence is presented that flares are triggered when the field shear reaches a critical degree, in qualitative agreement with some theoretical analyses of sheared force-free fields. Finally, a scenario is outlined for the class of flares resulting from large-scale magnetic shear; the overall instability driving the energy release results from positive feedback between reconnection and eruption of the sheared field. 相似文献
18.
A.I. Podgorny I.M. Podgorny 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The current sheet (CS) creation before a flare in the vicinity of a singular line above the active region NOAA 10365 is shown in numerical experiments. Such a way the possibility of energy accumulation for a solar flare is demonstrated. These data and results of observation confirm the electrodynamical solar flare model that explains solar flares and CME appearance during CS disruption. The model explains also all phenomena observed in flares. For correct reproduction of the real boundary conditions the magnetic flux between spots should be taken into account. The full system of 3D MHD equations are solved using the PERESVET code. For setting the boundary conditions the method of photospheric magnetic maps is used. Such a method permits to take into account all evolution of photospherical magnetic field during several days before the flare. 相似文献
19.
20.
M.I. Pudovkin S.A. Zaitseva B.P. Besser 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,19(12):1909-1912
The earthward displacement of the magnetopause observed during a southward IMF (or the magnetopause erosion) and its dependence on the solar wind plasma and magnetic field parameters is studied by investigating data of about 30 magnetopause crossings by the ISEE 1 and 2 spacecraft. It is shown that the magnetopause erosion may be explained by a depression of the magnetic field intensity in the dayside magnetosphere caused by the penetration of the magnetosheath magnetic field (component perpendicular to the reconnection line) into the magnetosphere. The penetration coefficient (the ratio of the intensity of the penetrated field to the intensity of the magnetosheath magnetic field) is estimated and found to equal approximately 1. 相似文献