首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.  相似文献   

2.
Interchange reconnection at the Sun, that is, reconnection between a doubly-connected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole boundary, where open fields meet closed loops. The second aspect concerns the means by which the heliospheric magnetic field strength reached record-lows during the recent solar minimum period. A?new implication of this work is that interchange reconnection may be responsible for the puzzling, occasional coincidence of the heliospheric current sheet and the interface between fast and slow flow in the solar wind.  相似文献   

3.
Coronal holes are low-density regions of the corona which appear dark in X-rays and which contain “open” magnetic flux, along which plasma escapes into the heliosphere. Like the rest of the Sun’s large-scale field, the open flux originates in active regions but is subsequently redistributed over the solar surface by transport processes, eventually forming the polar coronal holes. The total open flux and radial interplanetary field component vary roughly as the Sun’s total dipole strength, which tends to peak a few years after sunspot maximum. An inverse correlation exists between the rate of flux-tube expansion in coronal holes and the solar wind speed at 1 AU. In the rapidly diverging fields present at the polar hole boundaries and near active regions, the bulk of the heating occurs at low heights, leading to an increase in the mass flux density at the Sun and a decrease in the asymptotic wind speed. The quasi-rigid rotation of coronal holes is maintained by continual footpoint exchanges between open and closed field lines, with the reconnection taking place at the streamer cusps. At much lower heights within the hole interiors, “interchange reconnection” between small bipoles and the overlying open flux also gives rise to coronal jets and polar plumes.  相似文献   

4.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Interplanetary outflows from coronal mass ejections (ICMEs) are structures shaped by their magnetic fields. Sometimes these fields are highly ordered and reflect properties of the solar magnetic field. Field lines emerging in CMEs are presumably connected to the Sun at both ends, but about half lose their connection at one end by the time they are observed in ICMEs. All must eventually lose one connection in order to prevent a build-up of flux in the heliosphere; but since little change is observed between 1 AU and 5 AU, this process may take months to years to complete. As ICMEs propagate out into the heliosphere, they kinematically elongate in angular extent, expand from higher pressure within, distort owing to inhomogeneous solar wind structure, and can compress the ambient solar wind, depending upon their relative speed. Their magnetic fields may reconnect with solar wind fields or those of other ICMEs with which they interact, creating complicated signatures in spacecraft data.  相似文献   

6.
Nine coronal mass ejections (CMEs) have been detected in the solar wind by the Ulysses plasma experiment between 31° and 61° South. One of these events, which was also a magnetic cloud, was directly associated with an event observed by the soft X-ray telescope on Yohkoh in which large magnetic loops formed in the solar corona directly beneath Ulysses. This association suggests that the flux rope topology of the magnetic cloud resulted from reconnection between the legs of neighboring magnetic loops within the rising CME. The average CME speed (740 km s–1) at these latitudes was comparable to that of the normal solar wind there and is much greater than average CME speeds observed either in the solar wind in the ecliptic plane or in the corona close to the Sun. We suggest that the same basic acceleration process applies to both slow CMEs and the normal solar wind at any latitude.  相似文献   

7.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

8.
This paper summarizes space probe observations relevant to the determination of the large-scale, three-dimensional structure of the solar wind and its solar cycle variations. Observations between 0.6 and 5 AU reveal very little change in the average solar-wind velocity, but a pronounced decrease in the spread of velocities about the average. The velocity changes may be accompanied by a transfer of energy from the electrons to the protons. The mass flux falls off approximately as the inverse square of distance as expected for spherically symmetric flow. Measurements of the interplanetary magnetic field show that the spiral angle is well defined over this entire range of distances, but there is some evidence that the spiral may wind up more slowly with distance from the Sun than predicted by Parker's model. The variances or noise in the field and plasma have also been measured as a function of radial distance.During the rising portion of the solar-activity cycle, the solar-wind velocity showed a pronounced positive correlation with solar latitude over the range ±7°. Several other plasma parameters which have been found generally to correlate (or anticorrelate) with velocity also showed a latitude variation; these parameters include the density, percent helium, and azimuthal flow direction. The average polarity and the north-south component of the magnetic field depend on the solar hemisphere in which the measurements are made.Dependence on the phase of the solar-activity cycle can be found in the data on the number of high speed streams, the proton density, the percent helium, and the magnetic-field strength and polarity.  相似文献   

9.
Recent papers have suggested that the slow solar wind is a super-position of material which is released by reconnection from large coronal loops. This reconnection process is driven by large-scale motions of solar magnetic flux driven by the non-radial expansion of the solar wind from the differentially rotating photosphere into more rigidly rotating coronal holes. The elemental composition of the slow solar wind material is observed to be fractionated and more variable than the fast solar wind from coronal holes. Recently, it has also been reported that fractionation also occurs in 3He/4He. This may be interpreted in the frame-work of an existing model for fractionation on large coronal loops in which wave-particle interactions preferentially heat ions thereby modifying their scale-heights. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Simulations of coronal mass ejections (CMEs) evolving in the interplanetary (IP) space from the Sun up to 1 AU are performed in the framework of ideal magnetohydrodynamics (MHD) by the means of a finite-volume, explicit solver. The aim is to quantify the effect of the background solar wind and of the CME initiation parameters, such as the initial magnetic polarity, on the evolution and on the geo-effectiveness of CMEs. First, three different solar wind models are reconstructed using the same numerical grid and the same numerical scheme. Then, different CME initiation models are considered: Magnetic foot point shearing and magnetic flux emergence. For the fast CME evolution studies, a very simple CME model is considered: A high-density and high-pressure magnetized plasma blob is superposed on a background steady state solar wind model with an initial velocity and launch direction. The simulations show that the initial magnetic polarity substantially affects the IP evolution of the CMEs influencing the propagation velocity, the shape, the trajectory (and thus, the geo-effectiveness).  相似文献   

11.
The dynamics of the solar corona as observed during solar minimum with the Ultraviolet Coronagraph Spectrometer, UVCS, on SOHO is discussed. The large quiescent coronal streamers existing during this phase of the solar cycle are very likely composed by sub-streamers, formed by closed loops and separated by open field lines that are channelling a slow plasma that flows close to the heliospheric current sheet. The polar coronal holes, with magnetic topology significantly varying from their core to their edges, emit fast wind in their central region and slow wind close to the streamer boundary. The transition from fast to slow wind then appears to be gradual in the corona, in contrast with the sharp transition between the two wind regimes observed in the heliosphere. It is suggested that speed, abundance and kinetic energy of the wind are modulated by the topology of the coronal magnetic field. Energy deposition occurs both in the slow and fast wind but its effect on the kinetic temperature and expansion rate is different for the slow and fast wind.  相似文献   

12.
In this paper a global system of the magnetic field and current from the interaction of the solar wind plasma and the interstellar medium is modeled using a 3-D MHD simulation. The terminal shock, the heliopause and the outer shock are clearly determined in our simulation. In the heliosheath the toroidal magnetic field is found to increase with the distance from the sun. The magnetic field increases rapidly in the upstream region of the heliosheath and becomes maximum between the terminal shock and the heliopause. Hence a shell-type magnetic wall is found to be formed in the heliosheath. Because of this magnetic wall the radially expanding solar wind plasma changes its direction tailward in all latitudes except the equatorial region. Only the equatorial disk-like plasma flow is found to extend to the heliopause through the weak magnetic-field region around the equator. Two kinds of global current loops which sustain the toroidal magnetic field in the heliosphere are found in our simulation.The influence of the 11-year solar cycle variation of the magnetic polarity is also examined. It is found that the polarity of the toroidal magnetic field in the heliosheath switches at every solar cycle change. Hence the heliosheath is found to consist of such magnetized plasma bubbles. The neutral sheets are found to extend between such magnetized plasma bubbles in the 3-D heliosheath in a complicated form. The magnetic-pressure effect on the heliosheath plasma structure is also examined.  相似文献   

13.
Coronal plumes are believed to be essentially magnetic features: they are rooted in magnetic flux concentrations at the photosphere and are observed to extend nearly radially above coronal holes out to at least 15 solar radii, probably tracing the open field lines. The formation of plumes itself seems to be due to the presence of reconnecting magnetic field lines and this is probably the cause of the observed extremely low values of the Ne/Mg abundance ratio. In the inner corona, where the magnetic force is dominant, steady MHD models of coronal plumes deal essentially with quasi-potential magnetic fields but further out, where the gas pressure starts to be important, total pressure balance across the boundary of these dense structures must be considered. In this paper, the expansion of plumes into the fast polar wind is studied by using a thin flux tube model with two interacting components, plume and interplume. Preliminary results are compared with both remote sensing and solar wind in situ observations and the possible connection between coronal plumes with pressure-balance structures (PBS) and microstreams is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
On the Slow Solar Wind   总被引:1,自引:0,他引:1  
Fisk  L.A.  Schwadron  N.A.  Zurbuchen  T.H. 《Space Science Reviews》1998,86(1-4):51-60
A theory for the origin of the slow solar wind is described. Recent papers have demonstrated that magnetic flux moves across coronal holes as a result of the interplay between the differential rotation of the photosphere and the non-radial expansion of the solar wind in more rigidly rotating coronal holes. This flux will be deposited at low latitudes and should reconnect with closed magnetic loops, thereby releasing material from the loops to form the slow solar wind. It is pointed out that this mechanism provides a natural explanation for the charge states of elements observed in the slow solar wind, and for the presence of the First-Ionization Potential, or FIP, effect in the slow wind and its absence in fast wind. Comments are also provided on the role that the ACE mission should have in understanding the slow solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Plasma and magnetic field signatures from 29 November 1990 indicate that the Ulysses spacecraft passed through a series of interplanetary structures that were most likely formed by magnetic reconnection on open field lines ahead of a coronal mass ejection (CME). This reconnection changed the magnetic topology of the upstream region by converting normal open interplanetary magnetic field into a pair of regions: one magnetically disconnected from the Sun and the other, a tongue, connected back to the Sun at both ends. This process provides a new method for producing both heat flux dropouts and counterstreaming suprathermal electron signatures in interplanetary space. In this paper we expand upon the 29 November case study and argue that reconnection ahead of CMEs should be less common at high heliolatitudes.  相似文献   

16.
The most significant information about fields and plasmas in the outer solar system, based on observations by Pioneer 10 and 11 investigations, is reviewed. The characteristic evolution of solar wind streams beyond 1 AU has been observed. The region within which the velocity increases continuously near 1 AU is replaced at larger distances by a thick interaction region with abrupt jumps in the solar wind speed at the leading and trailing edges. These abrupt increases, accompanied by corresponding jumps in the field magnitude and in the solar wind density and temperature, consist typically of a forward and a reverse shock. The existence of two distinct corotating regions, separated by sharp boundaries, is a characteristic feature of the interplanetary medium in the outer solar system. Within the interaction regions, compression effects are dominant and the field strength, plasma density, plasma temperature and the level of fluctuations are enhanced. Within the intervening quiet regions, rarefaction effects dominate and the field magnitude, solar wind density and fluctuation level are very low. These changes in the structure of interplanetary space have significant consequences for the many energetic particles propagating through the medium. The interaction regions control the access to the inner solar system of relativistic electrons from Jupiter's magnetosphere. The interaction regions and shocks appear to be associated with an acceleration of solar protons to MeV energies. Flare-generated shocks are observed to be propagating through the outer solar system with constant speed, implying that the previously recognized deceleration of flare shocks takes place principally near the Sun. Radial gradients in the solar wind and interplanetary field parameters have been determined. The solar wind speed is nearly constant between 1 and 5 AU with only a slight deceleration of 30 km s+1 on the average. The proton flux follows an r +2 dependence reasonably well, however, the proton density shows a larger departure from this dependence. The proton temperature decreases steadily from 1 to 5 AU and the solar wind protons are slightly hotter than anticipated for an adiabatic expansion. The radial component of the interplanetary field falls off like r +2 and, on the average, the magnitude and spiral angle also agree reasonably well with theory. However, there is evidence, principally within quiet regions, of a significant departure of the azimuthal field component and the field magnitude from simple theoretical models. Pioneer 11 has obtained information up to heliographic latitudes of 16°. Observations of the interplanetary sector structure show that the polarity of the field becomes gradually more positive, corresponding to outward-directed fields at the Sun, and at the highest latitudes the sector structure disappears. These results confirm a prior suspicion that magnetic sectors are associated with an interplanetary current sheet surrounding the Sun which is inclined slightly to the solar equator.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   

17.
The Sun in Time   总被引:1,自引:0,他引:1  
The Sun varies in time over at least twenty orders of magnitude. In this highly selective look at a vast subject, the focus is on solar variations related to the magnetic field structure of the heliosphere since these changes affect the propagation of cosmic rays in the heliosphere. The root of the changes is the magnetic field pattern near the solar surface. Some key aspects of the behavior of this pattern are reviewed. Recent solar activity has been unlike any experienced in living memory and several of the observed oddities are noted. Included here is a first attempt to directly compare three decades of magnetic field measurements in coronal holes with the heliospheric magnetic field at 1 AU. Results support the idea that nearly all the open magnetic flux from the Sun originates in coronal holes (including those close to active regions).  相似文献   

18.
Sunspots, seen as cool regions on the surface of the Sun, are a thermal phenomenon. Sunspots are always associated with bipolar magnetic loops that break through the solar surface. Thus to explain the origin of sunspots we have to understand how the magnetic field originates inside the Sun and emerges at its surface. The field predicted by mean-field dynamo theories is too weak by itself to emerge at the surface of the Sun. However, because of the turbulent character of solar convection the fields generated by dynamo are intermittent – i.e., concentrated into ropes or sheets with large spaces in between. The intermittent fields are sufficiently strong to be able to emerge at the solar surface, in spite of the fact that their mean (average) value is weak. It is suggested here that magnetic fields emerge at the solar surface at those random times and places when the total magnetic field (mean field plus fluctuations) exceeds the threshold for buoyancy. The clustering of coherently emerged loops results in the formation of a sunspot. A non-axisymmetric enhancement of the underlying magnetic field causes in the clustering of sunspots forming sunspot groups, clusters of activity and active longitudes. The mean field, which is not directly observable, is also important, being responsible for the ensemble regularities of sunspots, such as Hale's law of sunspot polarities and the 11-year periodicity.  相似文献   

19.
Empirical studies have shown that the solar wind speed at Earth is inversely correlated with the areal expansion rate of magnetic flux tubes near the Sun. Recent model calculations that include a self-consistent determination of the coronal temperature allow one to understand the physical basis of this relationship; they also suggest why the solar wind mass flux is relatively constant.  相似文献   

20.
Polar auroras     
Conclusion We have reviewed the somewhat conflicting data which have accumulated on such a vast scale in recent years. It is now becoming clearer which studies are likely to produce significant results, and this in itself may be a very important consequence of the assimilation of accumulated data. We must however ask in conclusion: does the outer radiation belt exist during the polar aurora? If the interplanetary media or the solar wind, carry magnetic fields, then these fields can be of two kinds. Firstly, they may be magnetic lines of force dragged by the plasma from the Sun. Secondly, the interplanetary medium or the solar wind are capable of carrying closed magnetic lines of force which are not related to the Sun. When such fields approach the Earth, the high-latitude geomagnetic lines of force which previously passed through the equatorial plane on the boundary of the magnetosphere, may deform in such a way as to pass out of one geomagnetic poles, miss the equatorial plane, enter the interplanetary plasma, and after passing through a very considerable volume of this plasma reach the other geomagnetic pole. This will in effect amount to an attachment through the medium of magnetic lines of force of enormous regions of ionised interplanetary matter or of solar wind to the Earth's magnetosphere. As these extraneous magnetic fields depart from the Earth's neighbourhood, the original dipole field will be reestablished. Rapid variations in the configuration of the geomagnetic field will occur during the interaction. It is possible that energetic particles appear with a very high degree of probability on the boundary of the geomagnetic field during such deformations. If this is so, then the outer radiation belt is merely a temporary formation appearing during the quiet intervals between geomagnetic disturbances, and containing a small residue of energetic charged particles, which exist during the polar auroras but do not succeed in entering the lower atmosphere during this time. In this process the particles giving rise to the polar auroras originate in the plasma of the solar corpuscular streams flowing past the Earth.Under the action of a solar wind the geomagnetic field is compressed at the front and elongated at the rear. This resembles the original Chapman theory of geomagnetic storms more closely than any other theory. Since the elongated geomagnetic field on the night side of the Earth is of a lower intensity, it may be associated with the magnetic fields brought in by the incident medium right down to very great depths. This may be responsible for the observed displacement at the zone of the polar auroras towards lower geomagnetic latitudes at night.Translated by the Express Translation Servies, Wimbledon, London.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号