首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Measurements of the shape of the ultraviolet spectrum from B stars are compared with the theoretical spectra predicted from a homogeneous series of eight model atmospheres which are known to be close to a state of radiative equilibrium and to give a good representation of the ordinarily observed spectral region. The broad-band photometer measurements of Byram, Chubb, and Friedman in the region 1314 indicate that the stars become brighter in the ultraviolet as their temperature increases. The theoretical spectra reproduce this trend. However, the theoretical spectra are about three times as bright at 1314 relative to their brightness at 5560 as is observed.The spectral observations at 50Å resolution of Stecher and Milligan of six absorption-line stars are compared in detail with theoretical spectra. The observed shape of the spectrum is reproduced well by the models from 2600 to longer wavelengths. At wavelengths shorter than 2600 Å, the observed fluxes from B stars are less than the predicted fluxes. At 2000 the deficiency is between a factor two and a factor four. The spectrum of Canis Majoris is observed to have a different shape from that found for four other early-type stars. In the case of Canis Majoris the deficiency at 2000 is about a factor 13.The proper manner in which to compare theory and observation is discussed and some astrophysical terminology is explained. Theoretical fluxes, , are given in Table 1 for eight early B type model atmospheres at wavelengths between the Lyman limit and 6251. These fluxes have been computed without consideration of the opacity due to line blanketing. It is shown that line blanketing can probably account for the differences noted between predicted and observed ultra-violet spectra of B stars. It is not necessary at present to invoke unusual sources of opacity in the stellar atmosphere or in the space between the star and the earth in order to explain the observations. Spectra of B stars in the 2000 region at sufficient resolution to show the line spectrum would clarify the problem.  相似文献   

2.
We present helium and CNO isotopic yields for massive mass-losing stars in the initial mass range 15M M i 50M . We investigate their dependence on assumptions about mass loss rates, internal mixing processes, and metallicity, and specify the contributions from stellar winds and from supernova ejecta.  相似文献   

3.
New ultraviolet (1300 A, 3400 A),HST FOC observations have been used to derive the UV color-magnitude diagram (CMD) of R136, with the main scientific goal of studying the upper end of the stellar mass function at ultraviolet wavelengths where the color degeneracy encountered in visual CMDs is less severe. The CMD has been compared to a set of theoretical isochrones, which have been computed using the latest generation of evolutionary models and model atmospheres for early type stars. Wolf-Rayet stars are included. Comparison of theTheoretical andobserved CMD suggests that there are no stars brighter than M130–11. We use the observed main sequence turn-off and the known spectroscopic properties of the stellar population to derive constraints on the most probable age of R136. The presence of WNL stars and the lack of red supergiants suggests a most likely age of 3±1 Myr. A theoretical isochrone of 3±1 Myr is consistent with the observed stellar content of R136 if the most massive stars have initial masses around 50 M.Bases on Observations with the NASA/ESA Hubble Space Telescope, obtained at the STScI, which is operated by AURA, Inc., under NASA contract NAS5-26555.Astrophysics Division, Space Science Department, ESA  相似文献   

4.
The purpose of this work is to study the various -ray-production mechanisms in solar flares and to calculate the flux, the spectrum, and the decay curves of radiation. Using the continuity equation and taking into account the energy losses for solar-flare-accelerated particles, we obtain the time-dependent particle distribution and thus the time behavior of the resulting rays. The important processes for producing rays in solar flares are found to be nonthermal electron bremsstrahlung, decay of neutral mesons, positron annihilation, neutron capture, and decay of excited nuclei. The results are applied to several known solar flares. For a large flare such as the class 3+ on February 23, 1956, continuous rays with energies up to 100 MeV from electron bremsstrahlung and neutral meson decays are observable at the orbit of the Earth by existing -ray detectors. Line rays from positron annihilation (0.51 MeV), neutron capture (2.23 MeV), and deexcitation of excited nuclei O16 (6.14 and 7.12 MeV) and C12 (4.43 MeV) are particularly strong and well above the continuous -ray background due to electron bremsstrahlung. These lines can be detected at the Earth.NASA-NRC Resident Research Associate.  相似文献   

5.
There is now strong observational evidence that the composition of the Galactic Cosmic Rays (GCRs) exhibits some significant deviations with respect to the abundances measured in the local (solar neighbourhood) interstellar medium (ISM). Two main scenarios have been proposed in order to account for these differences (`anomalies). The first one, referred to as the `two-component scenario, invokes two distinct components to be accelerated to GCR energies by supernova blast waves. One of these components is just made of ISM material of `normal solar composition, while the other one emerges from the wind of massive mass-losing stars of the Wolf–Rayet (WR) type. The second model, referred to as the `metallicity-gradient scenario, envisions the acceleration of ISM material whose bulk composition is different from the local one as a result of the fact that it originates from inner regions of the Galaxy, where the metallicity has not the local value. In both scenarios, massive stars, particularly of the WR type, play an important role in shaping the GCR composition. After briefly reviewing some basic observations and predictions concerning WR stars (including s-process yields), this paper revisits the two proposed scenarios in the light of recent non-rotating or rotating WR models.  相似文献   

6.
This is an observational review, with an emphasis on photometric data and their interpretation. Two lists are presented, one containing Cephei stars, and the other, Cephei suspects. These lists then serve as a basis for discussing such topics as the location of Cephei stars in the observational and theoretical H-R diagrams, the evolutionary state of these stars, the period-luminosity and period-luminosity-color relations, and observational identification of pulsation modes. The paper also includes references to recent work connected with the theoretical discovery that an opacity mechanism is responsible for the excitation of Cephei-star pulsations. Finally, observational programs for verifying the consequences of this discovery are suggested.Belgian Fund for Scientific Research (NFWO).  相似文献   

7.
Energy coupling between the solar wind and the magnetosphere   总被引:13,自引:0,他引:13  
This paper describes in detail how we are led to the first approximation expression for the solar wind-magnetosphere energy coupling function , which correlates well with the total energy consumption rate U T of the magnetosphere. It is shown that is the primary factor which controls the time development of magnetospheric substorms and storms. The finding of this particular expression indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere constitute a dynamo. In fact, the power P generated by the dynamo can be identified as by using a dimensional analysis. Furthermore, the finding of indicates that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. Therefore, the finding of and its implications have considerably advanced and improved our understanding of magnetospheric processes. The finding of has also led us to a few specific future problems in understanding relationships between solar activity and magnetospheric disturbances, such as a study of distortion of the solar current disk and the accompanying changes of . It is also pointed out that one of the first tasks in the energy coupling study is an improvement of the total energy consumption rate U T of the magnetosphere. Specific steps to be taken in this study are suggested.  相似文献   

8.
I Present the results of ground-based and Hubble Space Telescope photometry and spectroscopy of the stars in the central region (roughly 7×7 arcmin) of 30 Doradus in the Large Magellanic Cloud (LMC). Using photometric data for over 2400 stars (complete toV18 mag), and spectroscopic observations of over 150 stars in the region, the best estimate of the initial mass function (IMF) yields a slope of =–1.5±0.2 for masses > 12M, where the Salpeter slope is =–1.35. I compare these results to other measurements of the IMF for OB associations in the Magellanic Clouds.  相似文献   

9.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

10.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

11.
The Voyager 1 and 2 spacecraft include instrumentation that makes comprehensive ion (E 28 keV) and electron (E 22 keV) measurements in several energy channels with good temporal, energy, and compositional resolution. Data collected over the past decade (1977–1988), including observations upstream and downstream of four planetary bow shocks (Earth, Jupiter, Saturn, Uranus) and numerous interplanetary shocks to 30 AU, are reviewed and analyzed in the context of the Fermi and shock drift acceleration (SDA) models. Principal findings upstream of planetary bow shocks include the simultaneous presence of ions and electrons, detection of tracer ions characteristic of the parent magnetosphere (O, S, O+), power-law energy spectra extending to 5 MeV, and large (up to 100:1) anisotropies. Results from interplanetary shocks include observation of acceleration to the highest energies ever seen in a shock ( 22 MeV for protons, 220 MeV for oxygen), the saturation in energy gain to 300 keV at quasi-parallel shocks, the observation of shock-accelerated relativistic electrons, and separation of high-energy (upstream) from low-energy (downstream) populations to within 1 particle gyroradius in a near-perpendicular shock. The overall results suggest that ions and electrons observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best. Further, that quasi-perpendicular interplanetary shocks accelerate ions and electrons most efficiently to high energies through the shock-drift process. These findings suggest that great care must be exercised in the application of concepts developed for heliosphere shocks to cosmic ray acceleration through shocks at supernova remnants.  相似文献   

12.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   

13.
Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the sueprnovae. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.Appendix: Notations A mass number of atomic nucleus - B v(a, b) incomplete beta function - c p specific heat at constant pressure - c p sound velocity - c(sub) center of the star - E e mean energy of an electron captured by nucleus - E n nuclear energy release from unit mass of the nuclear fuel specified by n - E thr threshold energy (9.3) - E thr,0 energy difference between the ground states of daughter nucleus and parent nucleus (9.1) - E energy of gamma ray emitted from daughter nucleus (9.1) - E v mean energy of a neutrino emitted by electron capture (9.1) - f flatness parameter (2.17) - g local gravitational acceleration (2.16) - H atomic mass unit - H p scale height of pressure (2.22) - H (sub) hydrogen-burning shell - k Boltzmann constant - l mixing length of convection - L cr(M r ) local Eddington's critical luminosity (4.3) - L n integrated nuclear energy generation rate by nuclear fuel specified by n - L v neutrino luminosity - L v, cr(M r ) local Eddington's critical neutrino luminosity (11.2) - M (current) mass of a star - m M core mass contained interior to the carbon-burning shell - M Ch Chandrasekhar's limiting mass (9.6) - M H core mass contained interior to the hydrogen-burning shell - M He core mass contained interior to the helium-burning shell - M ms mass of a star at its zero-age min-sequence - M O core mass contained interior to the oxygen-burning shell - M r mass contained interior to a shell at r - M Si core mass contained interior to the silicon-burning shell - M WD mass of white dwarf (7.1) - M 0 normalization factor to the non-dimensional mass (3.3) - M 1 core mass (3.6) - N polytropic index between pressure and density (2.3) - n polytropic index between pressure and temperature (10.1) - N A Avogadro number - N ad adiabatic polytropic index - N e number of electrons in unit mass of matter - NSE nuclear statistical equilibrium - P pressure - ph (sub) photosphere - Q e mass fraction of the envelope exterior of the shell e (2.14) - R stellar radius - r radial distance of a shell - r 0 normalization factor to the non-dimensional radius (3.2) - s specific entropy - S i specific entropy of ions - T temperature - U homology invariant defined by (2.1) - u gas specific internal energy of gas - u rad energy of the radiation field per volume in which unit mass of gas is contained (6.4) - V homology invariant defined by (2.2) - def velocity of deflagration front (6.10) - X concentration by weight of hydrogen - Y concentration by weight of helium - Y e mole number of electrons in one gram of matter (9.7) - Y v mole number of neutrinos in one gram of matter - Z concentration by weight of the elements other than hydrogen and helium - z shock strength (6.6) - 1 (sub) usually denotes the core edge (2.13) - ratio of the mixing length to the scale height of pressure (l/H p ) - ratio of gas pressure to the total pressure - ratio of the specific heats - gD locus of singularity in U-V plane (2.5) - M(H p ) mass contained within unit scale height of pressure (4.4) - ec energy rate by electron captures (9.5) - n nuclear energy generation rate by the nuclear fuel specified by n - v neutrino loss rate - L v (D) neutrino loss rate excluding the neutrinos from the electron captures (9.4) - non-dimensional density (3.1) - P/, not the non-dimensional temperature (2.7) - W Weinberg's angle (5.8) - opacity - v neutrino opacity (11.2) - describes the effect of electron degeneracy in equation of state (2.19) - ec rate of electron capture - mean molecular weight - e mean molecular weight of electrons - e chemical potential of an electron excluding the rest mass (8.1) - i mean molecular weight of ions - non-dimensional radius (3.1) - non-dimensional pressure (3.1) - matter density - cr GR critical density above which the general relativistic instability sets in - cr critical density for reimplosion of the core by beta processes (Section 5) - ign density at the ignition - nse density above which the deflagrated matter results in NSE composition - e non-dimensional entropy of electron-per one electron in units of k(9.2) - ff timescale of free fall (6.2) - h (H p ) timescale of heat transport over unit scale height of pressure (4.4) - n nuclear timescale for a change in temperature (6.1) - non-dimensional mass (3.1) - e chemical potential of an electron in units of kT (8.1)  相似文献   

14.
From analysis of the photometric ellipticity effect in seven well-understood detached close binary systems, empirical values of the exponent of gravity-darkening have been practically deduced for eleven main-sequence components of spectral types A, F and G which should cover the range of structural change (from radiative to convective) in stellar atmospheres. The result indicate that values of the exponent diminish gradually with decreasing effective temperatures from 1.0 for radiative atmospheres with T > 8500 K to = 0.2 0.3 for convective atmospheres with T < 6500 K, in spite of some uncertainty in the reflection correction process.  相似文献   

15.
We review the possible evolutionary paths from massive stars to explosive endpoints as various types of supernovae associated with Population I and hence with massive stars: Type II-P, Type II-L, Type Ib, Type Ic, and the hybrid events SN 1987K and SN 1993J. We identify SN 1954A as another hybrid event from the evidence for both H and He in its spectrum with velocities nearly the same as SN 1983J. Evidence for ejected56Ni mass of 0.07 M suggests that SN II-P underwent standard iron core collapse, not collapse of an O–Ne–Mg core nor thermonuclear explosion of a C–O core. Most SN II-P presumably arise in single stars or wide binaries of 10–20 M. There may be indirect evidence for duplicity in some cases in the form of strong Ba II lines, such as characterized SN 1987A. SN II-L are recognizably distinct from typical SN II-P and must undergo a significantly different evolution. Despite indications that SN II-L have small envelopes that may be helium enriched, they are also distinct from events like SN 1993J that must have yet again a different evolution. The SN II-L that share a common Luminosity seem to have ejected a small nickel mass and hence may come from stars with O–Ne–Mg cores. The amount of nickel ejected by the exceptionally bright events, SN 1980K and SN 1979C, remains controversial. SN Ib require the complete loss of the H envelope, either to a binary companion or to a wind. The few identified have relatively large ejecta masses. It is not clear what evolutionary processes distinguish SN Ib's evolving in binary systems from hybrid events that retain some H in the envelope. SN Ic events are both H and He deficient. Binary models that can account for transfer of an extended helium envelope from low mass helium cores, 2 to 4 M, imply C–O core masses that are roughly consistent with that deduced from the ejecta mass plus a neutron star, 2 to 3 M. It is possible that the hybrid events are the result of Roche lobe overflow and that the pure events, SN Ib or SN Ic, result from common envelope evolution.  相似文献   

16.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

17.
Cooling of neutron stars is calculated using an exact stellar evolution code. The full general relativistic version of the stellar structure equations are solved, with the best physical input currently available. For neutron stars with a stiff equation of state, we find that the deviation from the isothermality in the interior is significant and that it takes at least a few thousand years to reach the isothermal state. By comparing the most recent theoretical and observational results, we conclude that for Cas A, SN1006, and probably Tycho, standard cooling is inconsistent with the results from the Einstein Observatory, if neutron stars are assumed to be present in these objects. On the other hand, the detection points for RCW103 and the Crab are consistent with these theoretical results.On leave from Department of Physics, Ibaraki University, Japan  相似文献   

18.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

19.
By extrapolating to O/H = N/H = 0 the empirical correlations Y–O/H and Y–N/H defined by a relatively large sample of 45 Blue Compact Dwarfs (BCDs), we have obtained a primordial 4Helium mass fraction Y p=0.2443±0.0015 with dY/dZ=2.4±1.0. This result is in excellent agreement with the average Y p=0.2452±0.0015 determined in the two most metal-deficient BCDs known, I Zw 18 (Z /50) and SBS 0335–052 (Z /41), where the correction for He production is smallest. The quoted error (1) of 1% is statistical and does not include systematic effects. We examine various systematic effects including collisional excitation of hydrogen lines, ionization structure and temperature fluctuation effects, and underlying stellar Hei absorption, and conclude that combining all systematic effects, our Y p may be underestimated by 2–4%. Taken at face value, our Y p implies a baryon-to-photon number ratio =(4.7+1.0 –0.8)×10–10 and a baryon mass fraction b h 2 100=0.017±0.005 (2), consistent with the values obtained from deuterium and Cosmic Microwave Background measurements. Correcting Y p upward by 2–4% would make the agreement even better.  相似文献   

20.
Unseen companions to nearby stars are found astrometrically through perturbations in the proper motion from photographs taken with long-focus telescopes. The number of known unseen astrometric companions to nearby stars with photocentric orbits has grown by thirty percent in the last few years. Individual cases are discussed and optimum epochs given for resolution of the components. Orbital analysis of the photocentric positions on the photographic plates provides all information for accurate mass determination of the components except for m and angular separation, , of the two components which must come from another technique. There are potentially thirty low luminosity stars including some likely sub-stellar objects whose masses could be instantly found with the observations of these additional two parameters.A list of the stars known within five parsecs as of 1978 July is given and the status of unseen companions to these stars is discussed on the basis of long interval astrometric coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号