首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 390 毫秒
1.
深过冷熔体中的晶体形核与快速长大   总被引:1,自引:0,他引:1  
杨根仓  魏炳波  周尧和 《航空学报》1991,12(11):600-604
 以特制的无机盐玻璃作为净化剂去除液态Ni-0.39%B-6.58%Si合金中的异质晶核,获得363K(0.229T_L)过冷度,采用高速摄影及快速红外测温技术研究了深过冷熔体的快速凝固行为。  相似文献   

2.
Al-4.5%Cu合金的过冷及凝固组织特征   总被引:1,自引:0,他引:1  
对Al-4.5%Cu合金在纯石黑坩埚中用卤盐熔剂净化后的过冷度及其在金属锭模中的凝固组织特征进行了研究。实验结果发现:粘度较大的半固态熔剂对合金的净化作用较强,可使合金在金属锭模中得到62℃的形核过冷度;金属熔体净化得到的热力学过冷度对合金形核及最终宏观组织的影响明显不同于激冷得到的动力学过冷度对其所产生的影响,在一定过冷度下,晶粒尺寸随热力学过冷度的增大而增大  相似文献   

3.
采用电磁悬浮熔炼的深过冷凝固技术实现了Ti-48( at%) Al合金的深过冷,获得的最大过冷度为295K.采用红外测温仪记录实验过程的温度变化数据,OM技术观察不同过冷度下凝固合金的显微组织,结合深过冷凝固过程中的再辉行为分析了该合金的非平衡凝固路径.运用负熵模型、经典形核理论及瞬态形核理论,研究了Ti-48( at%)Al包晶合金中初生相与次生相的形核与过冷度之间的关系.通过对该合金熔体的β(bcc)相和α(hcp)相的临界形核功、稳态形核率、形核孕育时间和瞬态形核率的计算,并结合实验结果对β,α两相的形核进行了综合分析.结果表明,在~10K/s的较低冷速情况下,在整个过冷度(≤295K)范围内B(bcc)相总能作为初生相首先形核.  相似文献   

4.
Ni-7.3%Si-2.2%B合金快淬组织与深过冷快凝机制   总被引:1,自引:0,他引:1  
 采用B_2O_3玻璃和纯循环过热净化相结合的方法去除液态金属中的异质晶核,使液态Ni-7.3%Si-2.2%B合金获得了330K的过冷度。对比分析了该合金在低温基板上的快淬薄片与大体积深过冷试样的微观组织。借助计算机和红外测温系统,快速采集了熔体的再辉过程。数据处理发现,在深过冷液态金属的整个再辉区间,温度的上升速率呈瞬态变化特征,再辉时间随初始过冷度的提高而减小。最后,由再辉曲线确定出深过冷液态金属再辉过程中的固相分数与时间以及凝固速度与瞬时过冷度的关系。  相似文献   

5.
深过冷快速凝固Fe82.5Ni17.5合金的组织演化   总被引:1,自引:0,他引:1  
采用熔融玻璃净化结合循环过热的方法,使Fe82.5Ni17.5合金获得了330 K的最大初始过冷度.结合理论计算和组织观察,对Fe82.5Ni17.5合金在深过冷条件下的凝固行为和组织形成规律进行了研究.结果表明,过冷度△T<63 K时,合金的凝固组织为粗大的树枝晶;当63 K<△T<158 K时,凝固再辉所产生的重熔效应非常强烈,受此影响,初生的树枝晶被熔断,形成了细化的粒状晶组织;当过冷度进一步增大至158 K<△T<203 K时,再辉所产生的重熔效应大大降低,凝固组织进一步演变为发达的树枝晶组织;而当△T>203 K时,凝固组织的晶粒细化源于快速凝固体积骤变所产生收缩应力导致的初生枝晶碎断.  相似文献   

6.
深过冷液态金属的凝固特点   总被引:6,自引:0,他引:6  
 本文评述了近年来深过冷液态金属凝固过程研究的新进展,论及深过冷获得技术、晶体形核与快速长大、凝固组织形态转变、界面绝对稳定性与无偏析凝固、以及准晶和非晶形成。  相似文献   

7.
 将强制凝固的理论和试验结果应用到铝硅共晶铸锭柱晶凝固过程,得到了共晶片间距同凝固速度、形核过冷间的关系。柱晶凝固时共晶片间距同平均凝固速度因子V~(-2/3)成正比,还同凝固时形核过冷密切相关,形核过冷增加使共晶片间距减小。文中讨论了影响形核过冷的诸因素和凝固组织均匀性问题。  相似文献   

8.
杜雁霞  肖光明  张楠  李伟斌  王梓旭  易贤  桂业伟 《航空学报》2019,40(7):122627-122627
针对飞机过冷水滴结冰的精细化预测需求,基于相变热力学与相变动力学相关理论,采用示差扫描量热法(DSC)、结冰风洞试验及微结构测试相结合的方法,研究了过冷水滴凝固过程的热力学机理及凝固组织特征。基于示差扫描量热法,研究了冷却速率及形核条件对结晶凝固特性的影响规律;基于结冰风洞试验开展了不同温度条件下冰相的宏观形貌及微结构特征研究。结果表明,过冷条件及冷却速率是影响过冷水滴结晶速率及结晶完善程度的重要因素。降温速率越大,结晶速率常数增大、结晶速率相应提高。同时,结晶峰变宽,结晶初始温度向低温方向移动,过冷效应相对显著;反之亦然。过冷度及冷却速率对冰相的宏观及微观形貌均有着重要影响。过冷度越大则相同时间内冷却速率越大,晶体生长过程越不充分,晶体不规则程度相对较高,同时晶粒密度变大、尺度变小,冰相表观透明度相对降低;反之,过冷度越小,则晶粒密度变小、尺度变大,冰相表观透明度相对较高。异相形核条件对加速结晶过程有重要促进作用,晶种的存在可有效加速二次结晶的触发,使过冷效应显著减弱。相关研究可为飞机结冰速率、冰相物理特征及冰形宏观形貌的精细化预测提供参考。  相似文献   

9.
深过冷Ni-32.5%Sn共晶合金凝固过程中的再辉与组织形态   总被引:1,自引:0,他引:1  
 采用高温过热法去除异质晶核,使15g液体Ni-32.5%Sn共晶合金过冷度达395K(0.28T_E),借助快速红外测温技术研究了再辉现象及其与过冷、晶体形核和长大、以及凝固组织的关系,并对再辉过程中的结晶分数进行了近似计算。  相似文献   

10.
非平衡凝固是过冷条件下水滴凝固过程的重要现象。本文针对飞机结冰过程过冷水滴的非平衡凝固效应,发展了改进的凝固特性预测模型及数值计算方法,并自行搭建了实验系统,开展了所建过冷水滴凝固模型与数值预测方法的实验验证。研究表明,所发展的改进模型可有效表征水滴过冷阶段的非平衡凝固效应,因而对冷水滴凝固速率的预测有较好的改进;当过冷度为0℃时,过冷模型退化为传统模型。基于所建方法,开展了过冷度及冷却条件对水滴凝固特性的影响分析,获得了不同条件下水滴凝固过程的温度分布及相界面变化特征。研究表明,过冷度越大或水滴尺度越小,凝固速率相对越高;在考虑非平衡凝固效应的条件下,过冷水滴凝固速率要高于不考虑非平衡凝固效应的工况。相关研究可为结冰热力学模型的改进,以及结冰特性的精细化预测提供参考。  相似文献   

11.
Theconventionaldirectionalsolidificationisconductedatapositiveinterfacialtemperaturegradient,andseveralkindsofcharacteristics...  相似文献   

12.
 研究了净化Ni_(75)B_(17)Si_(8)合金液的方法以及净化对非晶形成能力的影响,通过净化工艺消除合金液内的异质质点可提高合金液的非晶形成能力;釆用净化和急冷相结合的工艺制备出了20×10×0.5(mm~3)的Ni-(75)B_(17)Si_(8)非晶合金试样。  相似文献   

13.
超洁净环境中三维非晶态凝固研究   总被引:1,自引:0,他引:1  
采用超洁净环境对 Zr41 Ti14 Ni10Cu12.5 Be22.5 合金进行电弧熔炼,在 1 0 0~ 1 50 K/s的慢速冷却条件下,成功地制备出厚度大于 1 0 mm的非晶合金。这是一种在超洁净环境中的部分无容器凝固,可以获得较大过冷度。随着熔炼过程中氧含量的增多,由于合金表面被氧化,氧化物作为异质晶核强烈促使液态合金结晶。利用红外测温方法快速检测了合金在凝固过程中非晶的形成。通过分析润湿角因子 f(θ)对合金形核与结晶过程的影响,获得了非晶态凝固所需临界冷却速率 Rc 与润湿角θ之间的关系。  相似文献   

14.
采用OM,XRD检测了不同熔体温度和冷却速度条件下Al-8.5Fe-1.3V-1.7Si (wt%)合金的微观组织结构, 并检测了不同熔体温度下采用粉末冶金工艺制备的该合金室温力学性能.结果表明:熔体温度、冷却速率对该合金组织和性能有着明显的影响.在相同冷却条件下,熔体温度越高所得到合金的组织越细小,获得该合金最高力学性能则存在一个最佳的熔体温度;冷却速度对该合金的主要相组成起决定作用,并结合Al-Fe-V-Si合金的特性提出了该合金的熔炼工艺.  相似文献   

15.
 利用氩气作为保护气体,以 Ni-Cr合金粉末做钎料,适当控制钎焊温度、保温时间和冷却速度,实现了金刚石与钢基体的牢固的化学冶金结合。利用扫描电镜和 X射线能谱,结合 X射线衍射结构分析,发现在钎焊过程中 Ni-Cr合金中的 Cr元素分离在金刚石界面形成富 Cr层并与金刚石表面的 C元素反应生成Cr3C2 和 Cr7C3,在钢基体结合界面上 Ni-Cr合金和钢基体中的元素相互扩散形成冶金结合,这是实现合金层与金刚石及钢基体之间都有较高结合强度的主要因素。并通过重负荷磨削实验进行验证取得较好的结果。  相似文献   

16.
储氢合金的性质及发展趋势   总被引:5,自引:0,他引:5  
本文介绍了储氢合金的性质,Ni-MH电池原理,以及储氢合金对Ni-MH电池所产生的影响,根据目前科学技术的发展以及市场的需求,提出了未来储氢合金及Ni-MH电池的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号