首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Liquid rocket engines for launch vehicles and space crafts as well as their subsystems need to be verified and qualified during hot-runs. A high test cadence combined with a flexible test team helps to reduce the cost for test verification during development/qualification as well as during acceptance testing for production. Test facility intelligence allows to test subsystems in the same manner as during complete engine system tests and will therefore reduce development time and cost.This paper gives an overview of the maturing of test engineering know how for rocket engine test stands as well as high altitude test stands for small propulsion thrusters at EADS-ST in Ottobrunn and Lampoldshausen and is split into two parts:
• Part 1 gives a historical overview of the EADS-ST test stands at Ottobrunn and Lampoldshausen since the beginning of Rocket propulsion activities in the 1960s.
• Part 2 gives an overview of the actual test capabilities and the test engineering know-how for test stand construction/adaptation and their use during running programs.
Examples of actual realised facility concepts are given to demonstrate cost saving potential for test programs in both cases for development/qualification issues as well as for production purposes.

Article Outline

1. Introduction
2. Historical overview
2.1. Ottobrunn
2.1.1. Air-breathing propulsion
2.2. Lampoldshausen
2.2.1. Attitude control systems
2.2.2. Launcher Propulsion
3. Today's status of hot firing test facilities at Lampoldshausen
4. Test facility engineering know how
5. Conclusion and outlook
References

1. Introduction

Test facilities are an indispensable element for the development and acceptance of space systems/subsystems and components. Hot-test facilities especially with environment simulation (e.g., altitude simulation) are very unique and are specifically designed to their needs.In Germany rocket propulsion developments were started during the 1950s in Ottobrunn near Munich. Beginning in the 1960s developments of attitude control engines and thruster for space crafts were started in Lampoldshausen. In addition to these two plants with test facilities and test capabilities, a third centre with test facilities operated by ERNO in Trauen was built up for the development of the ELDO Launcher (Europa III).In the frame of the consolidation of the different Space Propulsion activities within Dasa (Daimler-Benz Aerospace) in the 1990s as well as the creation of EADS-Space, all test activities were concentrated to the Lampoldshausen site, concluded in 2000.Main reasons for this concentration to one test site were:
• One EADS-ST test-centre in Germany.
• One EADS-ST Test and Engineering Team at one location.
• Multi-use of the three EADS test fields in Lampoldshausen instead of 10 facilities.
• Experts with test engineering know how for development and production programs at one location.
• Synergy effects for test facility modification/maintenance and field support together with DLR.
In addition, cost aspects, especially for test conductions have to be reduced. Therefore, the facility and test requirements have been changed by:
• Using more intelligence in the design and features of the facility (e.g., several test objectives to be tested during one hot-firing test).
• Use of test data for computer simulations as code calibration and therefore reduction of the total number of needed tests.
• Multi-function of test specialists with the main goal to reduce the test team size.
• Computer aided test set-up, firing sequencing and online documentation.

2. Historical overview

2.1. Ottobrunn

A complete overview of all technologies created since the mid of the 1950s is given by Hopmann in [1]. Within this chapter the focus was set on technologies and know how generated in the frame of the Ariane cyrogenic developments at P 59 and air-breathing propulsion [2] and [3].The start of the ARIANE 1 programme and the contract for the development of the HM7-A thrust chamber called for a new facility complex. The erection of the P 59 Test facility was the first high-pressure thrust chamber facility in Europe with a storage level of 800 bars. This high pressure gas was needed to feed the 400 bar LH2 and LOX vacuum insulated run-tanks. For this facility also a special valve test facility was erected in order to test the facility valves in advance to their integration into the test bench (Fig. 1).  相似文献   

2.
Roland Deschamps, Secretary General of Arianespace, discusses the evolution of the Ariane family of launchers and the creation of Arianespace to market and manage Ariane production and launch services. Tha launcher market is analysed and the advantages of Ariane compared to the US Shuttle are identified.  相似文献   

3.
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
• new mission trajectories and concepts;
• operational command and control considerations;
• expected science, operational, resource utilization, and impact mitigation returns; and
• continued exploration momentum and future Mars exploration benefits.
Keywords: NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space  相似文献   

4.
This paper examines the debate within the USA over how to meet the perceived competition from the successful European Ariane launcher and the loss of US market share for space launch services that it represented. In particular, it explores the origins of the 1983 Reagan Administration policy to turn over expendable launch vehicle production and operation to private industry. The Administration's other decisions to: (1) use the Space Shuttle to fly all government payloads, and (2) allow NASA to market Space Shuttle services commercially, conflicted with this commercialization policy. These policies effectively caused US industry to delay entry into the international competition for launch services until after the loss of the Space Shuttle Challenger in January 1986.  相似文献   

5.
This paper presents some research activities conducted at the Centre Spatial de Liege (CSL) in the field of space solar arrays and concentration.With the new generation of high efficiency solar cells, solar concentration brings new insights for future high power spacecrafts. A trade-off study is presented in this paper. Two different trough concentrators, and a linear Fresnel lens concentrator are compared to rigid arrays. Thermal and optical behaviors are included in the analysis.Several technical aspects are discussed:
• Off-pointing with concentrators induces collection loss and illumination non uniformity, reducing the PV efficiency.
• Concentrator deployment increases the mission risk.
• Reflective trough concentrators are attractive and already proven. Coating is made of VDA (Aluminum). A comprehensive analysis of PV conversion increase with protected silver is presented.
• Solar concentration increases the heat load on solar cells, while the conversion efficiency is significantly decreasing at warm temperatures.
To conclude, this paper will point out the new trends and the key factors to be addressed for the next generation of solar generators.  相似文献   

6.
The Long March 5(LM-5) launch vehicle is China's new generation heavy-lift rocket with the largest payload capacity,representing the highest standard of China's current launchers.It took 10 years to develop the LM-5 launch vehicle.On November 3,2016,the LM-5 carrier rocket blasted off from the Wenchang satellite launch center on Hainan Island,achieving a successful maiden flight.During the development of the LM-5 rocket,the engineering team accumulated abundant experience on developing heavy-lift cryogenic rockets and established a thorough research and development system for new generation launch vehicles,which significantly raised the ability for launcher RD.  相似文献   

7.
Claudio Maccone   《Acta Astronautica》2006,58(12):662-670
A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth–Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement.The mathematical theory developed by the author in the years 2002–2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth–Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:
(1) the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);
(2) the asteroid's size and density (also supposed to be known from astronomical observations of various types);
(3) the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;
(4) the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;
(5) the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.
This discovery of the simple “asteroid deflection law” presented in this paper was possible because:
(1) In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.
(2) The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.
Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:
(1) taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;
(2) adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth–Moon system or from the surface of the Moon itself;
(3) encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.
In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself!We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.  相似文献   

8.
The first part of the paper describes the structure of the analytical cost estimation model (1982 edition) for launch vehicle development, fabrication and launch operations cost. Especially the new approach for a cost assessment of operations cost including refurbishment (in case of reusable vehicles), direct and indirect operations is presented for discussion and subsequent improvements by introduction of more reference values. The model uses the Man-Year (MY) as cost unit which is independent from inflation and currency exchange rate changes.

The second part of the paper deals with its application to future systems analysis and cost comparison with the example of a potential future European launcher (Post-Ariane-4) with 15 tons LEO payload capability: ten different two-stage launch vehicle concepts (expendable, semi-reusable and fully reusable) with storable and cryogenic propellants are analysed with respect to development cost and cost per launch.

The key problem for a future European launch vehicle is the optimum solution between the (limited) development effort and the desired minimum launch cost. More advanced (partially) reusable systems could provide an essential reduction in cost per launch, require, however, a higher development effort.

In such a case an analytical cost model based on realistic reference data can provide important data for the vehicle concept selection process.  相似文献   


9.
A series of major accidents - the explosion of the Space Shuttle Challenger, the destruction of Titan and Delta launchers, and failures of the Ariane rocket series - has led to a reexamination of Western space programmes. In the short term, all satellite launches have been delayed. This is not an insurmountable obstacle, although it will inevitably delay the first space-based tests of SDI hardware. The author outlines the growing gap between the immediate needs of organizations which launch satellites and the more uncertain ambitions of the ‘conquerors’ of space. The former are now bearing the costs of the latter, who are aiming at manned space flights and a human presence in space. In the longer term, these objectives have justifications other than simple industrial and commercial logic. The author suggests that an attempt should be made to reconcile immediate military and industrial needs with the human desire to overcome the ‘Icarus complex’ in the long-term future.  相似文献   

10.
The technical development trend of future launch vehicle systems is towards fully reusable systems, in order to reduce space transportation cost. However, different types of launch vehicles are feasible, as there are
• —winged two-stage systems (WTS)
• —ballistic single-stage vehicles (BSS)
• —ballistic two-stage vehicles (BTS)
The performance of those systems is compared according to the present state of the art as well as the development cost, based on the “TRANSCOST-Model”. The development costs are shown versus launch mass (GLOW) and pay-load for the three types of reusable systems mentioned above.It is shown that performance optimization and cost minimization lead to different results. It is more economic to increase the vehicle size for achieving higher performance, instead of increasing technical complexity.Finally it is described that due to the essentially lower launch cost of reusable vehicles it will be feasible to recover the development cost by an amortization charge on the launch cost. This possibility, however, would allow commercial funding of future launch vehicle developments.  相似文献   

11.
The Ariane transfer vehicle (ATV), an Ariane 5 borne, unmanned propulsion vehicle, is designed to transport the logistics needed to resupply the International Space Station (ISS) and the man tended free flyer (MTFF) step 2 with pressurized and unpressurized cargo and to dispose the waste. The ATV is an expendable vehicle and is disposed of by a safe atmospheric burn up. In accordance with the AR5 schedule it should be operational in 1996 for missions toward ISS and beyond the year 2000 for MTFF 2 missions. The main constituents of the proposed ATV are the modified AR5 third stage L5, an upgraded VEB steering the launcher as well as the ATV and the P/L-adaptor providing mechanical and umbilical links to the payload. The mechanical part of the RVD-kit will be placed on the payload-module, the main RVD sensors are located on the adaptor and the needed computer intelligence will be integrated on the VEB. To minimize the development, and recurring costs, the ATV concept fully complies to the idea of maximum use of existing hardware and software, mainly from the AR5, Hermes and Columbus programs thus minimizing development and recurring costs. The ATV is compatible to ISS, MTFF and OMV and is able to transport logistic modules compatible with NSTS and U.S.-expendable launchers.  相似文献   

12.
This article traces the development of satellite launch vehicles from the derivatives of long-range ballistic missiles to the current Ariane and Space Shuttle programmes. Looking to the next generation of launchers, the author outlines current thinking on reusable vehicles, focusing particularly on the British Aerospace/Rolls Royce HOTOL concept.  相似文献   

13.
A multidisciplinary group of students from the university and latter also from the high school was formed in 1988 with the objective to make them put in practice their knowledge in physics, chemistry and mathematics and engineering fields in experimental rocketry. The group was called “Grupo de Foguetes Experimentais”, GFE.Since that time more than 150 students passed throw the group and now many of them are in the space arena.The benefits for students in a space hands-on project are many:
1. More interest in their school subjects is gotten as they see an application for them;
2. Interrelation attitudes are learned as space projects is a team activity;
3. Responsibility is gained as each is responsible for a part of a critical mission project;
4. Multidisciplinary and international experience is gotten as these are space project characteristics;
5. Learn how to work in a high stress environment as use to be a project launch.
This paper will cover the educational experiences gotten during these years and how some structured groups work. It is explained the objectives and how the group was formed. The group structure and the different phases that at each year the new team passes are described. It is shown the different activities that the group uses to do from scientific seminars, scientific club and international meetings to technical tours and assistance to rocket activities in regional schools.It is also explained the group outreach activities as some launches were covered by the media in more then 6 articles in newspaper and 7 television news.In 1999 as formed an official group called NATA, Núcleo de Atividades Aerospaciais within the Universidade Estadual de Londrina, UEL, by some GFE members and teachers from university. It is explained the first group project results.  相似文献   

14.
15.
16.
17.
In November 1986, more than 20 years ago, an H8 upper stage of Ariane 1 exploded in orbit nine months after the end of its mission. So as to avoid the generation of debris in low Earth orbit, a dedicated complementary development modified the design, introducing systematic passivation of the stage. Ever since this event, space debris mitigation has been a major concern for all launcher activities in Europe.After a short recall of the launchers currently operated by Arianespace as well as those currently developed by ESA with CNES, particularly for the safeguard authority, including the most promising future evolutions, the set of applicable regulations is described. These rules are fundamentally derived from the IADC Guidelines (hence the UNCOPUOS ones), translated into European Code of Conduct and in some more applicable Standards, such as the one prepared by ESA. The process of preparing ISO standards, mainly through the ECSS Working Group, is also described.Three major families can be identified: minimization of Mission Related Objects, Passivation of stages at the end of mission, and orbital protected zones including the so-called 25-year rule.The paper describes how European launchers do or will fulfill these applicable standards, quantifying the efficiency of the mitigation rules, and describing improvement actions currently under study.  相似文献   

18.
The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called “Bargouzin”.This paper describes the status of the presently studied RFBB concepts during its three phases.The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters (“Baikal” type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented.The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts.The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.  相似文献   

19.
The objective of this study is to identify the requirements of access to space for the future, the required methodology, key technologies and international cooperation mode. Firstly, the mission requirements and the challenges of current technologies to access to space are analyzed and summarized. The solutions and related key technologies to realize large-scale and low-cost access to space(L2 AS) are presented here, including the low-cost design of expendable launch vehicles and a reusable space transportation system, interface standardization, and new conceptual launchers. The mission modes based on launch vehicles to realize L2 AS and three future international collaboration modes are presented. Lastly, the relevant conclusions and suggestions are given.  相似文献   

20.
The agreement by the USA and Cocom to allow the export of US-built satellites for launch on Chinese launchers raised the national subsidy issue. The international commercial launch market is multinational and highly competitive; launch suppliers have accused each other of being unfairly subsdized. Currently the US government is engaged in various negotiations to establish a ‘level playing field’. A clear study of the subsidy issue is essential. This article examines some of the charges and the current situation associated with each country and suggests a possible approach for the USA to remain competitive in the international commercial launch market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号