首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our present knowledge on the average physical properties of the chromosphere and of the transition region between chromosphere and corona is reviewed. It is recalled that shock wave dissipation is responsible for the high temperatures observed in the chromosphere and corona and that, due to the non-linear character of the dissipation mechanism, no satisfactory explanation of the structure of the outer solar layers has yet been given. In this paper, the main emphasis is on the observations and their interpretation.Evidence for the non-spherically symmetric structure of the atmosphere is given; the validity of interpreting the observations with the help of a fictitious spherically symmetric atmosphere is discussed.The chromosphere and the transition region are studied separately: for each region, the energy balance is considered and recent homogeneous models derived from ultra-violet, infrared and radio observations are discussed.It is stressed that although in the chromosphere, a study of the radiative losses may lead to the determination, as function of height, of the amount of mechanical energy dissipated as function of height, a more detailed analysis of the velocity field is necessary to find the periods and the wavelengths of the waves responsible for the heating. The methods used for wave detection and some results are presented.Observational and theoretical evidence is given for the non-validity of the assumption of hydrostatic equilibrium which is commonly used in modeling the transition region.We conclude that a better understanding of the heating mechanism will come through a higher spatial resolution (less than 0.2) and more accurate absolute measurements, rather than from sophisticated hydrodynamical calculations.  相似文献   

2.
The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and larger scales, making the Sun essentially a multi-scale object. Convection and overshooting give the photosphere its face but also act as drivers for the layers above, namely the chromosphere and corona. The magnetic field configuration effectively couples the atmospheric layers on a multitude of spatial scales, for instance in the form of loops that are anchored in the convection zone and continue through the atmosphere up into the chromosphere and corona. The magnetic field is also an important structuring agent for the small, granulation-size scales, although (hydrodynamic) shock waves also play an important role—especially in the internetwork atmosphere where mostly weak fields prevail. Based on recent results from observations and numerical simulations, we attempt to present a comprehensive picture of the atmosphere of the quiet Sun as a highly intermittent and dynamic system.  相似文献   

3.
Studies of sporadic outbursts, ranging from flares to nano-flares, invariably endow the solar corona with steady plasma conditions, prior to seeking a current-flow (or the associated magnetic structure) which induces instability. Such an approach does not incorporate a crucial feature of the natural configuration, namely, that the material is of chromospheric origin, and only resides at coronal altitudes for as long as it can acquire adequate energy. There is clearly a feedback loop involved, which allows plasma to moderate the transfer of energy from the field while making use of this heat to permeate coronal altitudes. An examination of the whole procedure is necessary if the location and threshold-conditions for the energy-conversion mechanism are to be identified.A critical step in the feedback procedure mentioned involves the supply line which links the corona to the chromosphere. Because the solar atmosphere has such large vertical dimensions, even a modest change in average temperature and/or density can place heavy demands on this artery: the problem is that a conventional conduction-dominated transition layer cannot readily accommodate a rapid increase in current-density or plasma-flow. (Restructuring of the temperature gradient, to provide the carriers with extra heat, is a very slow process.) A transition layer of this type is unable to endure for long at the base of a sporadically-heated atmosphere in any case, since it becomes the target for plasma falling in the gravitational field during each intermediate cooling phase. As a result, the gap between the chromosphere and corona is more abrupt than is usually considered, endowing the region with thermo-electric characteristics which allow energy to be extracted when modest current-densities arise. Energy-conversion at this region fulfills two rôles: it supplies at least part of the heat required by the overlying corona, and maintains contact between the chromosphere and corona via non-thermal transport processes.  相似文献   

4.
In Part I of this review, the concepts of solar vacuum-ultraviolet (VUV) observations were outlined together with a discussion of the space instrumentation used for the investigations. A section on spectroradiometry provided some quantitative results on the solar VUV radiation without considering any details of the solar phenomena leading to the radiation. Here, in Part II, we present solar VUV observations over the last decades and their interpretations in terms of the plasma processes and the parameters of the solar atmosphere, with emphasis on the spatial and thermal structures of the chromosphere, transition region and corona of the quiet Sun. In addition, observations of active regions, solar flares and prominences are included as well as of small-scale events. Special sections are devoted to the elemental composition of the solar atmosphere and theoretical considerations on the heating of the corona and the generation of the solar wind.  相似文献   

5.
6.
Flare phenomena in the solar atmosphere and in the terrestrial magnetosphere exhibit many similarities. The mechanical energy of enhanced photospheric motion is converted and stored in the form of magnetic potential energy in sunspot fields, which is analogous to the case of the growth phase of magnetospheric substorms. The energy release during the explosive phase is initiated by a sudden collapse in the magnetic field topology and the X-type magnetic neutral point is created in the corona. Subsequent electrical discharge takes place in the form of an intense electrojet current flowing in the base of the chromosphere at the altitude where the Cowling conductivity is a maximum. It is suggested that the acceleration of particles by field-aligned electric fields and the Ohmic heating in the chromosphere result in major features of solar flares.This article also appears inSolar Physics 40 (1975) 217–226. By way of exception this paper is reproduced here for the sake of completeness.  相似文献   

7.
Basic mechanisms of the hydrodynamic shock wave formation in the solar atmosphere during flares are considered. Hydrodynamic plasma flows during flares arise due to fast energy release which is accumulated in the magnetic field of currents in the solar atmosphere. Shock waves arise as a result of rapid heating of the chromospheric upper layers from accelerated particles or heat fluxes. Powerful hydrodynamic phenomena can also arise due to explosive current sheet disruption in the region of strong magnetic field reconnection. Fundamental questions of shock wave formation and propagation in a non-homogeneous emitting solar atmosphere are discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

8.
9.
Magneto-gravity Waves Trapped in the Lower Solar Corona   总被引:1,自引:0,他引:1  
The possibility of trapped magneto-gravity waves in the lower solar corona with an open magnetic field is discussed. Intensity variations and/or Doppler shifts of relevant UV, EUV and x-ray spectral lines in the chromosphere, transition region and lower corona may reveal the existence of such low-frequency modes (with periods longer than ∼ 1.5 hour). The spectrum may be either discrete or continuous depending on the reflection property of the narrow transition region. These modes can be utilized to probe the dynamics of the upper chromosphere, transition region and lower corona; they may also play an important role in coronal heating. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Over the last two decades the uninterrupted, high resolution observations of the Sun, from the excellent range of telescopes aboard many spacecraft complemented with observations from sophisticated ground-based telescopes have opened up a new world producing significantly more complete information on the physical conditions of the solar atmosphere than before. The interface between the lower solar atmosphere where energy is generated by subsurface convection and the corona comprises the chromosphere, which is dominated by jet-like, dynamic structures, called mottles when found in quiet regions, fibrils when found in active regions and spicules when observed at the solar limb. Recently, space observations with Hinode have led to the suggestion that there should exist two different types of spicules called Type?I and Type?II which have different properties. Ground-based observations in the Ca?ii H and K filtergrams reveal the existence of long, thin emission features called straws in observations close to the limb, and a class of short-lived events called rapid blue-shifted excursions characterized by large Doppler shifts that appear only in the blue wing of the Ca?ii infrared line. It has been suggested that the key to understanding how the solar plasma is accelerated and heated may well be found in the studies of these jet-like, dynamic events. However, while these structures are observed and studied for more than 130 years in the visible, but also in the UV and EUV emission lines and continua, there are still many questions to be answered. Thus, despite their importance and a multitude of observations performed and theoretical models proposed, questions regarding their origin, how they are formed, their physical parameters, their association with the underlying photospheric magnetic field, how they appear in the different spectral lines, and the interrelationship between structures observed in quiet and active regions on the disk and at the limb, as well as their role in global processes has not yet received definitive answers. In addition, how they affect the coronal heating and solar wind need to be further explored. In this review we present observations and physical properties of small-scale jet-like chromospheric events observed in active and quiet regions, on the disk and at the limb and discuss their interrelationship.  相似文献   

11.
We outline a theory for the origin and acceleration of the fast solar wind as a consequence of network microflares releasing a spectrum of high frequency Alfvén waves which heat (by cyclotron absorption) the corona close to the Sun. The significant features of our model of the fast wind are that the acceleration is rapid with the sonic point at around two solar radii, the proton temperatures are high (~ 5 million degrees) and the minor ions are correspondingly hotter, roughly in proportion to their mass. Moreover we argue that since the energy flux needed to power the quiet corona in closed field regions is about the same as that needed to drive the fast solar wind, and also because at deeper levels (< 2 × 105 K) there is no great difference in the properties of supergranules and network in closed and open field regions, the heating process (i.e., dissipation of high frequency waves) must be the same in both cases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
We review the structure and dynamics of the solar chromosphere with emphasis on the quiet Sun and properties that are relevant to element fractionation mechanisms. Attention is given to the chromospheric magnetic field, its connections to the photosphere, and to the dynamical evolution of the chromosphere. While some profound advances have been made in the “unmagnetized” chromosphere, our knowledge of the magnetically controlled chromosphere, more relevant for the discussion of element fractionation, is limited. Given the dynamic nature of the chromosphere and the poorly understood magnetic linkage to the corona, it is unlikely that we will soon know the detailed processes leading to FIP fractionation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Observations of the solar spectrum have been made between 1200–2200 with high spectral resolution. The results were obtained with an all-reflecting echelle spectrograph carried by a stabilized Skylark rocket launched in April 1970. Measurements of the profiles of a number of emission lines due to Siii, Cii, Siiii and Civ formed in the temperature range 104-105 K, indicate ion energies which are considerably in excess of the electron temperatures derived from the ionization balance. Since the ion/electron relaxation time is very short the observed ion energies cannot correspond to an ion temperature and hence a non-thermal mechanical energy component exists in the transition zone.It is postulated that the non-thermal energy component represents the actual mechanical energy responsible for the heating of the corona, and, that, it is propagated as an acoustic wave. On this basis and with a preliminary estimate of the reflection from the transition zone, a flux of 3 × 105 erg cm -2 s -1 is established as entering the corona. This value is in agreement with estimates of the total energy loss from the corona due to conduction, radiation and the solar wind, thus establishing a gross energy balance.Theoretical calculations are currently underway to establish the physical nature of the atmosphere which would result from such a propagating flux. At the present time this has been carried out for an atmosphere in hydrostatic equilibrium and the energy balance equation solved. A preliminary temperature structure which results is shown in Figure 1, together with the derived distribution in electron density. This gives a corona of the right temperature and density but the observed structure deviates in detail from those derived from an analysis of the solar XUV spectrum.  相似文献   

14.
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.  相似文献   

15.
Since their discovery, spicules have attracted increased attention as energy/mass bridges between the dense and dynamic photosphere and the tenuous hot solar corona. Mechanical energy of photospheric random and coherent motions can be guided by magnetic field lines, spanning from the interior to the upper parts of the solar atmosphere, in the form of waves and oscillations. Since spicules are one of the most pronounced features of the chromosphere, the energy transport they participate in can be traced by the observations of their oscillatory motions. Oscillations in spicules have been observed for a long time. However the recent high-resolution and high-cadence space and ground based facilities with superb spatial, temporal and spectral capacities brought new aspects in the research of spicule dynamics. Here we review the progress made in imaging and spectroscopic observations of waves and oscillations in spicules. The observations are accompanied by a discussion on theoretical modelling and interpretations of these oscillations. Finally, we embark on the recent developments made on the presence and role of Alfvén and kink waves in spicules. We also address the extensive debate made on the Alfvén versus kink waves in the context of the explanation of the observed transverse oscillations of spicule axes.  相似文献   

16.
Numerical simulations of energy depositions in the middle and upper solar chromosphere result in ejection of chromospheric material into the corona and heating of the chromospheric gas. These simulations may be capable of describing some of the features seen by the soft X-ray telescope on board theYohkoh satellite.  相似文献   

17.
18.
The structure of the outer solar atmosphere and its magnetic coupling to the photospheric motions indicate the existence of large-scale current systems. The heating and the dynamics of coronal structures is therefore governed by electrodynamic coupling of these structures to the underlying photosphere. In a structured corona, the heating is enhanced because of several processes such as resonance absorption of Alfvénic surface waves, anomalous Joule heating, reconnection and the related topological dissipation. The global thermal and dynamic behaviour of coronal structures can be fruitfully described in terms of equivalent electrodynamic circuits, taking into account the paramount role of the photospheric boundaries. Coronal current systems may be stable, as in the case of coronal loops, but occassionally they show catastrophic behaviour if the current intensity surpasses a critical threshold.  相似文献   

19.
We review the mechanisms which are thought to provide steady heating of chromospheres and coronae. It appears now fairly well established that nonmagnetic chromospheric regions of latetype stars are heated by shock dissipation of acoustic waves which are generated in the stellar surface convection zones. In the case of late-type giants there is additional heating by shocks from pulsational waves. For slowly rotating stars, which have weak or no magnetic fields, these two are the dominant chromospheric heating mechanisms.Except for F-stars, the chromospheric heating of rapidly rotating late-type stars is dominated by magnetic heating either through MHD wave dissipation (AC mechanisms) or through magnetic field dissipation (DC mechanisms). The MHD wave and magnetic field energy comes from fluid motions in the stellar convection zones. Waves are also generated by reconnective events at chromospheric and coronal heights. The high-frequency part of the motion spectrum leads to AC heating, the low frequency part to DC heating. The coronae are almost exclusively heated by magnetic mechanisms. It is not possible to say at the moment whether AC or DC mechanisms are dominant, although presently the DC mechanisms (e.g., nanoflares) appear to be the more important. Only a more detailed study of the formation of and the dissipation in small-scale structures can answer this question.The X-ray emission in early-type stars shows the presence of coronal structures which are very different from those in late-type stars. This emission apparently arises in the hot post-shock regions of gas blobs which are accelerated in the stellar wind by the intense radiation field of these stars.  相似文献   

20.
We expect a variety of dynamic phenomena in the quiescent non-flaring corona. Plasma flows, such as siphon flows or convective flows of chromospheric material evaporating into the corona, are expected whenever a pressure differences is established either between the footpoints or between the coronal and chromospheric segments of a coronal loop. Such flows can induce phenomena of spatial and temporal brightness variability of the corona. In particular, evaporation induces a net mass input into the corona and consequently coronal density enhancements. Flows are also expected in the regions where energy is released during magnetic reconnection. From the observational point of view the dynamics of the solar atmosphere has been investigated in great detail mostly in the lower transition region with the HRTS, and during flares with theSolar Maximum Mission andYohkoh. The high spectral, temporal and spatial resolution of theSOHO ultraviolet spectrometers should enable us in the near future to fill the gap providing a continuous coverage from the chromosphere to the corona, in the 104–106 K domain, and therefore to best study the dynamics throughout the solar atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号