首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
碳纤维增强聚合物复合材料具有轻质高强的优异特性,是液氢液氧燃料贮箱的理想材料。然而液氢液氧燃料贮箱在服役时要承受极低温度载荷,复合材料贮箱箱体的低温结构可靠性尚未可知。开展了碳纤维/环氧复合材料缠绕贮箱结构在温度和内压载荷下的变形及损伤研究,分别进行了常温/低温抗渗漏测试,结合应变测量、声发射监测、氦质谱检漏等方法分别研究了内压以及低温工况对复合材料贮箱的应变分布及损伤泄漏状态影响机制。研究结果表明,封头与圆筒区域交界处易产生应变集中,低温载荷导致复合材料局部小幅度基体损伤及纤维/基体界面脱粘,但并未影响贮箱箱体承压性能和气密性。本研究可为未来大型航天器减质设计提供参考。  相似文献   

2.
低温表面张力贮箱研究   总被引:1,自引:0,他引:1  
对用于低温液氧推进剂的表面张力贮箱进行了理论上的初步分析,认为其在理论上是可以实现的。从低温表面张力贮箱的材料选择、低温推进剂引起的热应力及隔热层结构形式等方面进行了初步探讨。重点介绍了低温表面张力贮箱隔热层的结构形式及选用的隔热材料。分析了低温表面张力贮箱面临的特殊问题。  相似文献   

3.
通过研制、改进焊接工装 ,完善装配、焊接工艺 ,基本上解决了低温贮箱装配错位和对合间隙不均匀问题 ,提高了焊缝一次交检合格率 ,大大减少了贮箱焊接后的变形量 ,提高了贮箱环焊缝的质量和可靠性。  相似文献   

4.
为了研究低温推进剂贮箱的压力控制特性和热力学排气系统的运行特性,建立了耦合贮箱内流体流动相变过程与热力学排气系统(TVS)的数学模型,对TVS系统运行后贮箱的压力和温度变化进行了仿真计算。在以液氮为贮存工质的低温流体高效贮存平台上,进行了仿真模型的验证。分析了不同液体过冷度对低温贮箱温度和压力控制特性的影响。研究发现,在相同的在轨贮存周期内,对于饱和状态的液氢和液氧,TVS只有在排气模式下才能实现低温贮箱的压力控制,而对于过冷状态的液氢和液氧,TVS只需进行混合模式运行便可实现低温贮箱压力控制,且TVS混合运行时间随液体过冷度的增加而减少,16 K液氢时TVS的运行时间(546 s)相比于20 K液氢(663 s)减少了17.6%,78 K液氧时TVS的运行时间(2 760 s)相比于90 K液氧(16 469 s)减少了83.2%。过冷液体与气枕的混合可以实现低温流体在轨贮存过程中的零排放。  相似文献   

5.
1993年国外在先进航空航天材料的研制和应用方面有长足的进展。随着人们对耐热材料和高比强度材料需求的增长,先进金属合金及聚合物基、金属基和陶瓷基复合材料在特殊领域的应用,进展更快。不过,目前它们还受到价格和环境保护方便的限制。 先进金属合金和金属基复合材料的研究着重在探索高温刚性、高比强度和耐蠕变材料的制造工艺方面。例如,美国正在鉴定一种新型铝锂合金,这种材料很可能替换常用的铝合金,用于制造航天飞机外挂贮箱,如成功,即可大大减轻外挂贮箱的重量。金属间铝化物(龙其  相似文献   

6.
火箭发动机地面试验中,低温推进剂贮箱增压过程的传热、传质以及湍流流动过程十分复杂。贮箱增压系统具有非线性、时间滞后、参数变化不确定等特点,对增压系统难以建立精确的数学模型。因此,以低温推进剂贮箱内压力稳定为目的,提出了采用多路、不同直径管道增压的模糊控制方案;应用模糊控制算法中的最大隶属度法进行解模糊化,制定增压管路的模糊控制表,建立了以压力为控制变量的模糊控制器。分别对预增压过程和保持增压过程的两种工况进行了仿真。仿真结果表明:模糊控制算法能有效提高推进剂贮箱中压力调节的控制精度和响应速度,使得离开贮箱的推进剂压力稳定地满足发动机泵入口的压力和净吸程要求。  相似文献   

7.
基于六边形单胞模型,构建了宏细观结构力学响应场间的关联矩阵,建立了低温推进剂复合材料贮箱结构的宏细观一体化分析方法,采用工程常用的能够预测不同失效模式的宏细观强度准则,对机械和温度载荷下复合材料层合板的基体开裂进行预测。结果表明:在机械载荷下,与试验数据相比,宏观Hashin准则、改进的宏观Tsai-Wu准则、细观最大应力准则和细观Hashin准则均具有良好的预测精度。但在温度载荷下,由于考虑了组分材料间热力学性能的不匹配,使用细观强度准则与宏观强度准则预测的结果相比具有一定差异。通过对不同载荷情况下基体开裂预测结果的分析,提出了采用细观最大应力准则作为基体开裂判据,同时结合考虑组分材料热力学性能差异影响的宏细观一体化分析方法,可以有效地对低温推进剂复合材料贮箱结构的基体开裂进行预测。  相似文献   

8.
最近研制的轻质纤维/金属复合材料压力容器用的高强度碳纤维已通过了试验鉴定。对碳纤维性能、小试验气瓶性能、圆筒体性能、球体性能和低温贮箱性能等也进行了测量。试验结果与金属压力容器及其它纤维/金属压力容器结构进行了比较。碳纤维/金属圆筒压力容器和球形压力容器与以前性能最好的凯夫拉49/金属复合材料结构相比,其实际性能提高23%以上。  相似文献   

9.
得益于优异的力学性能和减质优势,贮箱复合材料化已成为新一代航天器的重要特征之一,而复合材料贮箱的冲击后渗漏问题须要重点关注。针对一种用于航天器贮箱的含表层机织布复合材料层合板,通过依次开展低速冲击试验、C扫描损伤检测和氦质谱渗漏检测,获取不同能量冲击后层合板的内部分层损伤和渗漏率,并对比分析了机织布分别置于冲击侧和背侧时层合板的渗漏规律。结果表明,将机织布层置于冲击背侧时,层合板的冲击渗漏门槛值显著提高,且发生渗漏时出现目视可见损伤。  相似文献   

10.
为执行克林顿总统94年8月5号的航天运输政策,NASA 决定研制新一代可重复使用运载器(RLV),主要努力放在单级入轨(SSTO)结构。航天局目前的计划是验证能满足 SSTO 工作性能要求所需要的关键技术。这些技术包括先进的长寿命、低维护防热系统;可重复使用低温贮箱(如铝—锂复合材料和石墨复合材料贮籍);复合材科主结构和贮箱间结构;自动的或独立的检验、发射、飞行控制、制导、导航与健康监测以及先进的推进装置。RLV 的推进装置要求比冲高,可操作性和坚固性好以及高的推重比。NASA 的 RLV 计划将鉴定数种发动机型号,不仅有全低温的(氢—氧)。而且有双燃料的(由烃—氢—氧过渡到氢—氧。)不过,要研制所提出的任何一种全尺寸发动机结构并验证其是否能满足 SSTO 工作的性能、质量、可操作性和坚固性准则,在资源和手段上都是很不够的。  相似文献   

11.
随着运载火箭低成本、高可靠性的发展趋势,对贮箱增压的控制技术提出了更高的要求。在研究国内外火箭的增压控制技术现状的基础上,总结提炼出增压控制技术的发展趋势,为后续新型火箭的研制提供参考。  相似文献   

12.
《Acta Astronautica》1986,13(2):63-70
H-I is a future launch vehicle of Japan with a capability of placing more than 550 kg payload into a geostationary orbit. The National Space Development Agency of Japan (NASDA) is now directing its efforts to the final development of H-I launch vehicle. H-I's high launch capability is attained by adopting a newly developed second stage with a LOX/LH2 propulsion system. The second stage propulsion system consists of a tank and an engine. The tank is 2.5 m in diameter and 5.7 m in length and contains 8.7 tons of propellants. This tank is an integral tank with a common bulkhead which separates the tank into forward LH2 tank and aft LOX tank. The tank is made of 2219 aluminum alloy and is insulated with sprayed polyurethane foam. The common bulkhead is made of FRP honeycomb core and aluminium alloy surface sheets.The most critical item in the development of the tank is the common bulkhead, therefore the cryogenic structural test was carried out to verify the structural integrity of the bulkhead. The structural integrity of the whole LOX/LH2 tank was verified by the cryogenic structural test of a sub-scale tank and the room temperature structural test of a prototype tank.  相似文献   

13.
一种卫星推进系统复合材料氦气瓶设计及验证   总被引:6,自引:0,他引:6  
在忽略内衬的条件下,对一种卫星推进系统复合材料氦气瓶进行了初步设计,并在考虑内衬的情况下,对初步设计的结果进行了详细设计和改进,获得了气瓶的内衬厚度、螺旋纤维和环向纤维厚度及缠绕角等参数。用有限元法对所设计的氦气瓶进行静力学、稳定性和模态分析,并作了完整的鉴定试验。设计和验证结果表明,基于网格理论的复合材料容器设计法可用于空间高压气瓶的设计,用有限元法对气瓶的力学性能进行分析和验证。两者结合,可有效满足复合材料压力容器设计及其分析的工程需求。  相似文献   

14.
系统分析了液体推进剂对隔膜式贮箱中隔膜材料的腐蚀和渗透规律,提出了采用镀膜技术进行金属和非金属材料复合的方案来解决推进剂的渗透问题。初步试验结果证明,复合膜技术在降低材料渗透率方面有着明显的优势。  相似文献   

15.
This paper introduces a launch vehicle scheme for the new generation of cryogenic and quick-launch launch vehicle(LM-6). The main technical innovations of LM-6 launch vehicle include the capability of twenty satellites launched by one vehicle, high-pressure staged combustion cycle engine and oxygen tank self-pressurization, sandwich bulkhead tank with 200 K temperature difference, and 7-day quick-launch using the "three horizontals" test and launch mode with integral transportation and erection. The future development of the quick-launch launch vehicle is predicted based upon the need for vehicle mission coverage improvement, better response speed, and stronger market competiveness.  相似文献   

16.
杜飞  徐超  鱼则行 《宇航学报》2019,40(10):1177-1186
系统梳理了国内外针对可重复使用航天运载器开展的结构健康监测技术研究工作情况,并针对其中的关键技术问题,包括热防护系统连接松动检测、低温贮箱健康监测、结构冲击监测、在轨试验验证进行了详细讨论,总结了国内外的研究现状、技术能力以及发展趋势,指出了结构健康监测系统实际部署中的技术需求,为今后可重复使用运载器结构健康监测系统的实际应用提供借鉴。  相似文献   

17.
航天器结构用材料应用现状与未来需求   总被引:6,自引:0,他引:6  
航天器结构是所有航天器的重要组成部分和基础,影响航天器结构性能的最主要的因素是结构用材料。文章着重对航天器结构中广泛使用的复合材料、金属材料、防热材料的应用现状进行了分析,同时提出了未来发展需求。  相似文献   

18.
研究正交铺层的碳纤维增强环氧树脂基复合材料(CFRP)在超低温的环境下的弯曲性能和损伤破坏形式。对复合材料试样进行不同时间的液氧浸泡处理和不同次数的常温/液氧温度热循环处理来模拟液氧燃料贮箱使用工况,通过配有超低温试验装置的力学试验机研究CFRP在不同超低温条件处理前后的低温弯曲强度和弯曲模量的变化规律;采用扫描电子显微镜(SEM)对破坏前后试样的微观形貌进行分析。结果表明,经过液氧浸泡及常温/液氧温度热循环处理的CFRP的超低温弯曲强度和模量变化趋势基本一致,均随时间和循环次数的增加先下降后上升,这种变化规律与其超低温环境下材料的微观结构变化密切相关。结合CFRP破坏前后的宏观和微观结构特性以及微裂纹的扩展规律,揭示了正交铺层CFRP超低温弯曲性能变化的 机理。  相似文献   

19.
航天器推进剂的输送管路在飞行过程中承受了低温、内压及振动等复合载荷的作用,因此对管路的结构疲劳及振动特性的分析研究是航天器研制阶段的重点之一。为了研究多种介质载荷综合施加的影响,文章分析了无介质载荷、内压载荷、低温-内压-附加质量综合介质载荷等3种条件下输送管路结构的振动响应特性,获得了3种介质载荷对薄壁轻质管路的影响规律,便于指导开展以后的航天器输送管路地面验证试验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号