共查询到19条相似文献,搜索用时 109 毫秒
1.
基于脉冲燃烧直连式试验台,开展了超燃冲压发动机氢气引导乙烯火焰的非定常燃烧过程研究。燃烧室入口条件为马赫数2、总温950 K和总压1.0 MPa。试验过程分为4个阶段:冷流、引导氢气单独燃烧、引导氢气点燃乙烯、乙烯单独燃烧。基于高频壁面压力测量和火焰荧光高速摄影,获得了代表性测点的压力时间曲线及燃烧室内火焰发展历程,提取了压力平均值、振荡幅度和频率、着火时间及反应位置等重要信息,分析了不同燃烧阶段的非定常特性。试验结果表明:在氢气单独燃烧阶段,非定常特性源于凹槽后斜坡区域氢气反应强度的变化。在氢气点燃乙烯阶段,非定常特性由氢气和乙烯火焰的“交接”引起。在乙烯单独燃烧阶段,非定常特性由燃烧和超声速流动之间的耦合引起。 相似文献
2.
3.
4.
为了研究高温升燃烧室在冷态和燃烧状态下的流动差异及其对贫油熄火过程的影响规律,采用粒子图像测速法(PIV)和高速相机对2种状态下流场结构及贫油熄火过程进行测量。结果表明:主燃孔和掺混孔射流与头部旋流存在相互作用,使得燃烧室流动处于自模化状态,其流场结构不随压损的改变而变化,但速度值随着压损的增大而提高;当量比的变化不会影响在燃烧状态下的流场结构,但影响速度值,且燃油喷射对头部流场存在一定影响;在冷态和燃烧状态下流场结构的差异最主要体现在局部回流区和气流速度上,燃烧状态下的轴向正速度约为冷态时的5~7倍,径向速度约为10倍;气流的流动方式对贫油熄火过程影响显著,在局部漩涡和垂直气流作用的区域火焰首先熄灭。 相似文献
5.
根据流体流动控制方程组,研究发现明渠中的浅水波和气体中的扰动波具有相同的传播特征,因而可用直观形象的水流实验来模拟复杂的气体动力学现象。运用收缩扩张形实验明渠得到的水流实验结果与气体流场数值仿真结果具有良好的一致性,验证了明渠流模拟气体动力学现象的有效性。研究结果表明:拉瓦尔喷管中的马赫数M与同尺寸明渠中的弗劳德数Fr具有相同的变化规律;明渠中的超临界流通过楔形体和圆柱体时的流动现象可以比较理想地模拟出超声速气流在相应条件下的膨胀波和激波现象;通过改变出口外部水位的方式在明渠内形成的水跃波,可以非常形象地模拟出拉瓦尔喷管在相应条件下形成的管内激波。 相似文献
6.
为进一步减小涡轮过渡段流动损失,深入了解涡轮过渡段中的非定常损失机理,开展了大扩张角过渡段研究。在过渡段的非定常流动机理研究中,过渡段进口流场的最显著特点是:转子泄漏涡、通道涡和尾迹。采用数值方法对大扩张角涡轮过渡段进行3维非定常数值仿真。结果表明:支板尾缘部分的静压波动小于支板前缘部分的;高压涡轮静子尾迹被转子切割后进入转子通道中向下游传播并在过渡段内形成尾迹通道,尾迹在过渡段内的时空演化是过渡段内损失的主要来源;过渡段支板表面负荷分布发生明显的周期性变化,支板表面承受较强的非定常力,在过渡段设计中必须考虑。 相似文献
7.
8.
LU-AUSMPW混合格式在可压缩无粘和粘性流动数值分析中的应用 总被引:1,自引:0,他引:1
本文首先将 AUSMPW格式与三阶 MUSCL格式融合, 给出了其在任意曲线坐标下的三维形式, 并将其与 LU-SGS格式结合, 应用于可压缩 Euler和 Navier-Stokes方程的求解。其次, 构造了一种新的通量限制器。最后, 为了验证 LU -AUSMPW混合格式的性能, 将平面叶栅跨音速无粘流动以及喷管超音速粘性流动作为算例。本文计算结果与文献计算结果和实验数据相符很好, 表明采用 LU-AUSMPW混合格式数值模拟可压缩流场, 具有较高的计算精度、较快的收敛速度和良好的稳定性。 相似文献
9.
10.
针对跨声速条件下,小展弦比截尖三角翼尾舵的旋成体导弹在小迎角、零侧滑、大舵偏对称状态下呈现出的非对称流动现象,本文首次对其进行了分析研究。首先,通过一系列测力试验、表面油流试验及粒子图像测速(PIV)试验对该非对称流动现象进行了精准捕捉,并对其产生的原因进行了分析。然后,基于已获得的试验数据及流场观测结果,借助数值模拟方法对所述非对称流动的细节、拓扑结构、空间形态及舵面压力分布等问题做了深入研究,并进行了详细讨论。结果表明:旋成体导弹小展弦比舵面大偏度对称偏转时,舵面前缘产生的翼尖涡会因舵面相距较近而相互干扰,促使翼尖涡沿流向非对称发展,使得舵面压力分布不均,最终导致非对称流动和较大横向量的产生,影响导弹的气动性能。 相似文献
11.
大攻角侧向多喷干扰流场特性数值模拟 总被引:2,自引:1,他引:2
采用计算流体力学(CFD)方法研究了大攻角状态下侧向多喷口干扰复杂流场对导弹气动特性的影响。首先通过喷流标模和大长细比导弹模型的雷诺平均Navier-Stokes(RANS)数值模拟,分别验证了所采用的仿真方法对喷流干扰流场和导弹大攻角流动求解的能力;其次采用RANS方程组对大攻角状态侧向多喷干扰流场进行了数值模拟,表明攻角与喷口数量对导弹气动载荷分布产生较大的影响;然后通过对比分析有/无喷流时法向力系数沿导弹轴向的分布,以及流场结构,揭示了不同攻角时喷流干扰流场对导弹气动特性影响的流动机理;最后给出了侧向喷流对导弹建立攻角时间影响的初步分析,表明与采用单独气动舵进行姿态控制相比,在10 km高度采用侧向喷流直接力控制不能提高导弹的快速性。 相似文献
12.
为研究等离子体激励器对喷管分离流动的抑制作用,运用了模拟等离子体激励作用效果的唯象学模型,数值模拟研究了交流介质阻挡放电等离子体和电弧放电等离子体对喷管分离流动的抑制效果,并探究了电弧放电等离子体不同放电热功率密度、不同放电位置对抑制效果的影响。结果表明:电弧放电等离子体在抑制喷管分离流动方面有更好的效果。当电弧放电等离子体激励器作用于激波与边界层相互作用区的上游时,对分离流动的抑制效果最好;当电弧放电热功率密度较小时,其产生的诱导射流速度很小且不易对分离区的流线产生影响;当电弧放电热功率密度为8×1010 W/m3时,喷管的分离回流区完全消失。 相似文献
13.
根据燃面的平行层推移原理,获得了某大长径比固体火箭发动机装药燃面变化过程。采用有限体积法计算了发动机在旋转飞行状态下的三维稳态流场,着重分析了不同时刻药柱开槽部分和燃烧室尾部的流速、流迹分布及其对发动机正常工作的影响,认为发动机尾部热防护以及药柱悬臂段强度是保证其正常工作的关键因素。 相似文献
14.
为研究叶尖泄漏流对稳定性的影响,发展了一种叶尖泄漏涡模型,并且在由课题组开发的TU-SIAC(three dimensional and unsteady stall inception analysis code)程序中实现.该程序将转/静子叶排模化为三维激盘,并在无叶区求解三维非定常欧拉方程,黏性的影响通过特性曲线... 相似文献
15.
16.
悬停状态共轴刚性双旋翼非定常流动干扰机理 总被引:9,自引:1,他引:9
基于运动嵌套网格方法,建立了一套适合于悬停状态下共轴刚性双旋翼非定常干扰流场分析的计算流体力学(CFD)方法。首先,基于高效的运动嵌套网格技术,采用积分形式的可压雷诺平均Navier-Stokes(RANS)方程作为双旋翼非定常流场求解控制方程,湍流模型选用Baldwin-Lomax模型,时间推进采用双时间方法。在CFD方法的验证基础之上,对干扰过程中的桨尖涡涡核位置及强度演变规律进行了细致分析,揭示了共轴双旋翼非定常干扰流场中上、下旋翼桨尖涡与双旋翼桨叶之间的贴近干扰、碰撞现象,以及上、下旋翼桨尖涡之间的相互干扰机理。然后,进一步研究了不同总距角下的共轴旋翼系统中上、下旋翼的非定常气动特性以及影响规律。计算结果表明:上旋翼桨叶的桨尖涡会直接与下旋翼桨叶发生碰撞,导致下旋翼桨叶拉力损失;上旋翼桨叶的桨尖涡和下旋翼桨叶的桨尖涡相互干扰,改变了桨尖涡的强度和轨迹;上、下旋翼桨叶相互靠近时,上、下旋翼桨叶的拉力均会上升,之后相互远离时上、下旋翼桨叶拉力均会先下降再上升。 相似文献
17.
发展了非结构重叠网格技术,提出适合于直升机旋翼运动的动态非结构重叠网格算法,该算法使得在采用非结构重叠网格模拟直升机流场时实现程序自动处理网格,不需任何人工干预。流动控制方程采用非定常可压缩Euler方程,空间离散采用Jameson有限体积法,时间推进采用双时间步长法,为加速收敛,在双时间步长内循环迭代中采用预处理技术。为验证本发展的预处理解算器以及动态非结构重叠网格的算法的可信性和有效性,开展一系列的数值实验,模拟了不同速度范围的NACA0012翼型绕流,Caradonna旋翼悬停和前飞流场以及Robin直升机机身-旋翼组合的前飞非定常流场,结果表明采用本文算法得到的结果是可信的,网格处理是自动高效的,可以应用于直升机全机流场模拟,为直升机设计提供可信指导数据。 相似文献
18.
针对柔片式密封的流场和密封性能及其影响因素进行研究,建立了密封区域流体动力学计算模型,对密封间隙内流场的速度、压力分布和泄漏量进行了计算,分析了工况和结构参数对泄漏量的影响趋势.分析表明:密封泄漏量随密封压差的增大呈线性增长趋势,而随转子转速的增加变化不大;柔片宽度由3mm增加至7mm,系统泄漏量降低了40%左右,而柔片长度由12mm增加至16mm,泄漏量仅增加8%左右;前/背板与柔片或转子间间距的增大将使泄漏量上升,且前板与转子间设计间距对泄漏量相对影响较大,随其增加,泄漏量最高可增加16%;柔片末端楔形区域对泄漏量及对转子作用力均产生影响. 相似文献
19.
尾部二次喷流抑制喷管分离流动的数值研究 总被引:2,自引:3,他引:2
以某液体火箭喷管缩比模型为研究对象,分析了相应的流场形态和二次流喷嘴喷射角度、面积比及其工质总温等参数对喷管分离流动抑制效果的影响.结果表明:当采用二次流喷嘴时,喷管达到满流所需的入口总压下降了37.8%,随着喷嘴喷射角度由0°增至25°,喷管流动分离点位置向喉部推进约0.01m,抑制效果明显变差,而随着喷嘴工质总温由300K升至1500K,喷管流动分离点位置向出口推进约0.005m,抑制效果略有增强,喷嘴面积比在保证其不出现分离流动时对抑制效果没有影响,否则会使抑制效果变差. 相似文献