共查询到8条相似文献,搜索用时 15 毫秒
1.
《中国航空学报》2022,35(9):242-254
In recent years, the crack fault is one of the most common faults in the rotor system and it is still a challenge for crack position diagnosis in the hollow shaft rotor system. In this paper, a method based on the Convolutional Neural Network and deep metric learning (CNN-C) is proposed to effectively identify the crack position for a hollow shaft rotor system. Center-loss function is used to enhance the performance of neural network. Main contributions include: Firstly, the dynamic response of the dual-disks hollow shaft rotor system is obtained. The analysis results show that the crack will cause super-harmonic resonance, and the peak value of it is closely related to the position and depth of the crack. In addition, the amplitude near the non-resonant region also has relationship with the crack parameters. Secondly, we proposed an effective crack position diagnosis method which has the highest 99.04% recognition accuracy compared with other algorithms. Then, the influence of penalty factor on CNN-C performance is analyzed, which shows that too high penalty factor will lead to the decline of the neural network performance. Finally, the feature vectors are visualized via t-distributed Stochastic Neighbor Embedding (t-SNE). Naive Bayes classifier (NB) and K-Nearest Neighbor algorithm (KNN) are used to verify the validity of the feature vectors extracted by CNN-C. The results show that NB and KNN have more regular decision boundaries and higher recognition accuracy on the feature vectors data set extracted by CNN-C, indicating that the feature vectors extracted by CNN-C have great intra-class compactness and inter-class separability. 相似文献
2.
The variations in gas path parameter deviations can fully reflect the healthy state of aero-engine gas path components and units; therefore, airlines usually take them as key parameters for monitoring the aero-engine gas path performance state and conducting fault diagnosis. In the past, the airlines could not obtain deviations autonomously. At present, a data-driven method based on an aero-engine dataset with a large sample size can be utilized to obtain the deviations. However, it is still difficult to utilize aero-engine datasets with small sample sizes to establish regression models for deviations based on deep neural networks. To obtain monitoring autonomy of each aero-engine model, it is crucial to transfer and reuse the relevant knowledge of deviation modelling learned from different aero-engine models. This paper adopts the Residual-Back Propagation Neural Network (Res-BPNN) to deeply extract high-level features and stacks multi-layer Multi-Kernel Maximum Mean Discrepancy (MK-MMD) adaptation layers to map the extracted high-level features to the Reproduce Kernel Hilbert Space (RKHS) for discrepancy measurement. To further reduce the distribution discrepancy of each aero-engine model, the method of maximizing domain-confusion loss based on an adversarial mechanism is introduced to make the features learned from different domains as close as possible, and then the learned features can be confused. Through the above methods, domain-invariant features can be extracted, and the optimal adaptation effect can be achieved. Finally, the effectiveness of the proposed method is verified by using cruise data from different civil aero-engine models and compared with other transfer learning algorithms. 相似文献
3.
Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters’experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensi... 相似文献
4.
Fault diagnosis of bearings based on deep separable convolutional neural network and spatial dropout
Bearing pitting, one of the common faults in mechanical systems, is a research hotspot in both academia and industry. Traditional fault diagnosis methods for bearings are based on manual experience with low diagnostic efficiency. This study proposes a novel bearing fault diagnosis method based on deep separable convolution and spatial dropout regularization. Deep separable convolution extracts features from the raw bearing vibration signals, during which a 3 × 1 convolutional kernel with a one-s... 相似文献
5.
《中国航空学报》2022,35(9):314-332
An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagnosis. However, due to the performance differences caused by the tolerance of engine manufacturing and assembly, and performance degradation during continuously stringent environmental regulations, the model accuracy is severely reduced. In this paper, an adaptive modification method of turbofan engine nonlinear Component-Llevel Model (CLM) based on Long Short-Term Memory (LSTM) Neural Network (NN) and hybrid optimization algorithm is pro-posed. First, a dynamic compensator with a combined LSTM NN architecture is constructed to compensate for the initial error between the experimental data and CLM of a turbofan engine under health condition. Then, a sensitivity analysis approach based on the entropy coefficient and technique for order preference by similarity to an ideal solution integrated evaluation is developed to choose the unmeasurable health parameters to be adjusted. Finally, a parallel hybrid optimization algorithm is developed to complete the adaptive model modification when the performance degrades. The proposed method is verified on a military low-bypass twin-spool turbofan engine, and the experimental results show the effectiveness of the proposed method. 相似文献
6.
Drogue detection for autonomous aerial refueling based on convolutional neural networks 总被引:2,自引:0,他引:2
Drogue detection is a fundamental issue during the close docking phase of autonomous aerial refueling(AAR). To cope with this issue, a novel and effective method based on deep learning with convolutional neural networks(CNNs) is proposed. In order to ensure its robustness and wide application, a deep learning dataset of images was prepared by utilizing real data of ‘‘Probe and Drogue" aerial refueling, which contains diverse drogues in various environmental conditions without artificial features placed on the drogues. By employing deep learning ideas and graphics processing units(GPUs), a model for drogue detection using a Caffe deep learning framework with CNNs was designed to ensure the method's accuracy and real-time performance. Experiments were conducted to demonstrate the effectiveness of the proposed method, and results based on real AAR data compare its performance to other methods, validating the accuracy, speed, and robustness of its drogue detection ability. 相似文献
7.
8.
基于LSTM和CNN的高速柱塞泵故障诊断 总被引:1,自引:0,他引:1
针对高速轴向柱塞泵容易发生空化,且目前空化故障诊断方法存在依赖手工特征提取、鲁棒性不高的问题,提出了一种基于长短时记忆(LSTM)和一维卷积神经网络(1D-CNN)相结合的空化故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同空化等级下的壳体振动信号。利用LSTM和1D-CNN搭建的分类模型对不同进口压力情况下的振动信号进行空化等级识别。实验结果表明:提出的方法能够准确地识别出4类不同的空化等级,准确率高达99.5%,同时在不附加降噪方法的情况下,具有良好的鲁棒性,在0 dB信噪比的情况下,识别准确率高达87.3%。 相似文献