首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于融合神经网络的航空发动机剩余寿命预测   总被引:1,自引:0,他引:1  
李杰  贾渊杰  张志新  李润然 《推进技术》2021,42(8):1725-1734
航空发动机的性能退化是影响飞机飞行安全的重要因素.准确预测发动机的退化过程,对于飞机安全飞行具有重要意义.针对航空发动机剩余寿命预测问题,提出了一种将卷积神经网络和长短期记忆网络相融合的数据驱动模型.与常规使用单一的神经网络不同,所提出的融合模型结合了两种神经网络的优点,利用卷积神经网络提取数据中的空间特征并采用长短期...  相似文献   

2.
    
《中国航空学报》2023,36(5):447-464
Person re-Identification (reID), aiming at retrieving a person across different cameras, has been playing a more and more important role in the construction of smart city and social security. For deep-learning-based reID methods, it has been proved that using local feature together with global feature could help to give robust representation for person retrieval. Human pose information can provide the locations of human skeleton to effectively guide the network to pay more attention to these key areas, and can also help to reduce the noise distractions from background or occlusions. Based on human pose, a Pose Guided Graph Attention (PGGA) network is proposed in this paper, which is a multi-branch architecture consisting of one branch for global feature and two branches for local key-point features. A graph attention convolution layer is carefully designed to re-assign the contribution weight of each extracted local feature by modeling the similarity relations. The experimental results demonstrate the effectiveness of our approach on discriminative feature learning. Our model achieves the state-of-the-art performance on several mainstream evaluation datasets. A plenty of ablation studies and different kinds of comparison experiments are conducted to prove the effectiveness of this work, including the tests on occluded datasets and cross-domain datasets. Moreover, we further design supplementary tests in practical scenario to indicate the advantage of our work in real-word applications.  相似文献   

3.
    
《中国航空学报》2023,36(8):43-53
When a force test is conducted in a shock tunnel, vibration of the Force Measurement System (FMS) is excited under the strong flow impact, and it cannot be attenuated rapidly within the extremely short test duration of milliseconds order. The output signal of the force balance is coupled with the aerodynamic force and the inertial vibration. This interference can result in inaccurate force measurements, which can negatively impact the accuracy of the test results. To eliminate inertial vibration interference from the output signal, proposed here is a dynamic calibration modeling method for an FMS based on deep learning. The signal is processed using an intelligent Recurrent Neural Network (RNN) model in the time domain and an intelligent Convolutional Neural Network (CNN) model in the frequency domain. Results processed with the intelligent models show that the inertial vibration characteristics of the FMS can be identified efficiently and its main frequency is about 380 Hz. After processed by the intelligent models, the inertial vibration is mostly eliminated from the output signal. Also, the data processing results are subjected to error analysis. The relative error of each component is about 1%, which verifies that the modeling method based on deep learning has considerable engineering application value in data processing for pulse-type strain-gauge balances. Overall, the proposed dynamic calibration modeling method has the potential to improve the accuracy and reliability of force measurements in shock tunnel tests, which could have significant implications for the field of aerospace engineering.  相似文献   

4.
    
《中国航空学报》2022,35(9):242-254
In recent years, the crack fault is one of the most common faults in the rotor system and it is still a challenge for crack position diagnosis in the hollow shaft rotor system. In this paper, a method based on the Convolutional Neural Network and deep metric learning (CNN-C) is proposed to effectively identify the crack position for a hollow shaft rotor system. Center-loss function is used to enhance the performance of neural network. Main contributions include: Firstly, the dynamic response of the dual-disks hollow shaft rotor system is obtained. The analysis results show that the crack will cause super-harmonic resonance, and the peak value of it is closely related to the position and depth of the crack. In addition, the amplitude near the non-resonant region also has relationship with the crack parameters. Secondly, we proposed an effective crack position diagnosis method which has the highest 99.04% recognition accuracy compared with other algorithms. Then, the influence of penalty factor on CNN-C performance is analyzed, which shows that too high penalty factor will lead to the decline of the neural network performance. Finally, the feature vectors are visualized via t-distributed Stochastic Neighbor Embedding (t-SNE). Naive Bayes classifier (NB) and K-Nearest Neighbor algorithm (KNN) are used to verify the validity of the feature vectors extracted by CNN-C. The results show that NB and KNN have more regular decision boundaries and higher recognition accuracy on the feature vectors data set extracted by CNN-C, indicating that the feature vectors extracted by CNN-C have great intra-class compactness and inter-class separability.  相似文献   

5.
王坤  侯树贤 《推进技术》2022,43(1):284-293
针对传统机器学习的辅助动力装置(Auxiliary Power Unit, APU)性能参数预测方法不能充分利用参数数据间的时序性和非线性问题,提出了一种基于卷积神经网络(Convolutional Neural Network, CNN)-长短期记忆(Long Short-Term Memory, LSTM)-注意力(Attention)的APU性能参数预测方法。首先,引入一维CNN,通过预处理的参数数据得到不同属性的抽象特征。然后,使用LSTM神经网络对这些特征进行记忆,并结合可以对特征状态赋予不同权重的Attention机制来实现参数预测。使用某型APU的参数数据预测未来不同步长的排气温度(Exhaust Gas Temperature, EGT)。实验结果表明,对于单步EGT的预测,CNN-LSTM-Attention模型在平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)指标上比CNN-LSTM、LSTM和简单循环神经网络(Simple Recurrent Neural Network, Simple RNN)模型分别降低了15.2%、32.5%、60.3%,在均方根误差(Root Mean Square Error, RMSE)指标上分别降低了7.3%、11.6%、32.9%。同时它在多步EGT的预测中具有较高的预测精度,证明了该方法的有效性,为短期APU性能变化趋势预测提供一定的参考。  相似文献   

6.
    
Fault diagnosis is vital in manufacturing system.However,the first step of the traditional fault diagnosis method is to process the signal,extract the features and then put the features into a selected classifier for classification.The process of feature extraction depends on the experimenters’experience,and the classification rate of the shallow diagnostic model does not achieve satisfactory results.In view of these problems,this paper proposes a method of converting raw signals into twodimensi...  相似文献   

7.
针对基于博弈理论设计应对多枚拦截弹的协同突防控制方案时需要确定博弈对象的问题,提出了一种基于长短时记忆(LSTM)网络的拦截弹攻击对象匹配方法。基于传统防空导弹飞行时序与流程构建拦截弹飞行轨迹库,以轨迹库为训练样本对LSTM网络进行训练,并以此为基础构建航迹预测模型与对象匹配模型,实现对拦截弹攻击对象的识别。仿真结果表明,该方法能够有效识别拦截弹拦截目标,为后续的巡航弹突防研究提供支撑。  相似文献   

8.
长期演进(LTE)信号具有覆盖范围广泛、带宽大、自相关特性良好、抗衰落能力强及发射功率大等诸多有利于定位的优点,是一种可用于定位的主要机会信号.基于LTE信号的定位方法需要利用辐射源的位置信息进行解算,在非合作环境中获取基站的位置信息是使用LTE信号进行定位的基础.提出了一种利用移动单站获取LTE辐射源位置的定位方法,以到达时间差(TDOA)为观测量,建立了包含钟差校准的定位模型,并从单站的运动轨迹和初始点选取两个方面分析了算法的收敛性和定位精度.通过行人以及车载两种方式,在实际环境中对定位方法的性能进行了测试,实验结果表明,该方法的定位误差小于10 m.  相似文献   

9.
基于天顶对流层延迟(ZTD)的强时空特征,提出了一种融合卷积神经网络的改进注意力机制(CNN-ATT)的多站点ZTD组合预测模型。该模型首次将多源数据(包括日解算精度、年积日(DOY) 和三维坐标)综合运用于ZTD预测任务。通过对南宁市的5个参考站(CORS)和14个国际GNSS服务(IGS)站点共1 501个年积日的观测数据进行研究,选取传统BP模型、GPT2w模型和ATT模型作为基线模型进行实验对比分析。研究结果显示,在预测精度方面,改进的CNN-ATT模型与BP模型相比其均方误差(MSE)和平均绝对误差(MAE)分别减少了5.5 mm和 4.4 mm,预测精度分别提高了41.4%和67.8%;与ATT模型相比,CNN-ATT模型的预测MSE和MAE也分别减少了4.6 mm和2.1 mm,预测精度分别提升了36.2%和50.0%。在定位精度方面,改进的CNN-ATT模型的精度表现优于SAAS,GPT2w,BP以及ATT模型。并且与传统SAAS对流层模型相比,CNN-ATT模型在N,E,U 3个方向的精度提升高达18.2%,12.6%和31.0%。此外,研究还发现CNN-ATT模型在长预测时间步长中的精度表现更为稳定,更适合多测站预测任务,并且其精密单点定位(PPP)收敛速度更快。  相似文献   

10.
    
The variations in gas path parameter deviations can fully reflect the healthy state of aero-engine gas path components and units; therefore, airlines usually take them as key parameters for monitoring the aero-engine gas path performance state and conducting fault diagnosis. In the past, the airlines could not obtain deviations autonomously. At present, a data-driven method based on an aero-engine dataset with a large sample size can be utilized to obtain the deviations. However, it is still difficult to utilize aero-engine datasets with small sample sizes to establish regression models for deviations based on deep neural networks. To obtain monitoring autonomy of each aero-engine model, it is crucial to transfer and reuse the relevant knowledge of deviation modelling learned from different aero-engine models. This paper adopts the Residual-Back Propagation Neural Network (Res-BPNN) to deeply extract high-level features and stacks multi-layer Multi-Kernel Maximum Mean Discrepancy (MK-MMD) adaptation layers to map the extracted high-level features to the Reproduce Kernel Hilbert Space (RKHS) for discrepancy measurement. To further reduce the distribution discrepancy of each aero-engine model, the method of maximizing domain-confusion loss based on an adversarial mechanism is introduced to make the features learned from different domains as close as possible, and then the learned features can be confused. Through the above methods, domain-invariant features can be extracted, and the optimal adaptation effect can be achieved. Finally, the effectiveness of the proposed method is verified by using cruise data from different civil aero-engine models and compared with other transfer learning algorithms.  相似文献   

11.
针对航空发动机剩余寿命预估中模型建立困难且计算精度低等问题,提出了一种基于卷积神经网络和长短期记忆神经网络进行航空发动机剩余寿命预估的方法。利用卷积神经网络中的卷积层与池化层提取传感器数据中的特征,并依据卷积层提取出的特征,利用长短期记忆神经网络进行时间序列预测,并使用全连接层输出航空发动机剩余寿命。在NASA的C-MAPSS提供的涡扇发动机退化仿真数据集上对该方法进行了验证。结果表明:基于卷积神经网络和长短期记忆神经网络的航空发动机剩余寿命预估方法,可以在保证预测精度的前提下,对航空发动机剩余寿命进行较为保守的预估,在保证资源不被浪费的情况下,尽可能提前发出故障预警信号,从而提高飞行的安全性,进而为航空发动机健康管理系统提供有用信息。该预测方法在对称指标和非对称指标上均优于此前提出的方法。  相似文献   

12.
Drogue detection is a fundamental issue during the close docking phase of autonomous aerial refueling(AAR). To cope with this issue, a novel and effective method based on deep learning with convolutional neural networks(CNNs) is proposed. In order to ensure its robustness and wide application, a deep learning dataset of images was prepared by utilizing real data of ‘‘Probe and Drogue" aerial refueling, which contains diverse drogues in various environmental conditions without artificial features placed on the drogues. By employing deep learning ideas and graphics processing units(GPUs), a model for drogue detection using a Caffe deep learning framework with CNNs was designed to ensure the method's accuracy and real-time performance. Experiments were conducted to demonstrate the effectiveness of the proposed method, and results based on real AAR data compare its performance to other methods, validating the accuracy, speed, and robustness of its drogue detection ability.  相似文献   

13.
面向问题的稀疏分布式记忆模型   总被引:2,自引:0,他引:2  
陈松灿  杨国庆  吕军 《航空学报》1992,13(12):665-669
在Kanerva所提出的稀疏分布式记忆(SDM)或存贮模型的基础上,为实现对特定类问题的大维数输入空间的模式识别,如汉字识别,脸谱辩认等,根据问题的具体情况,诸如汉字的频率分布等,提出了一个面向问题的稀疏分布式记忆模型。改进后的模型更符合实际应用,其中的学习规则采用了指数型记忆规则,使模型具有更高的信噪比,存贮容量亦大大提高。计算机模拟表明了这一点。  相似文献   

14.
自组织模糊CMAC神经网络及其非线性系统辨识   总被引:6,自引:1,他引:5  
王源  胡寿松  齐俊伟 《航空学报》2001,22(6):556-558
 针对CMAC的特点,提出了联想度的概念,并由此设计了一种自组织模糊 CMAC神经网络( SOFC-MAC)及其学习算法,证明了SOFCMAC能以任意精度对非线性特性一致逼近。该网络具有学习速度快,逼近精度高及局部泛化能力等特点。歼击机系统特征模型辨识仿真验证表明了该方法的有效性。  相似文献   

15.
本文在多模型架构下,提出一种航空发动机传感器在线混合故障检测与隔离算法。利用长短期记忆网络逼近航空发动机建模误差、健康参数变化、过程噪声和测量噪声等不确定性源引起的真实发动机与机载模型之间的偏差。将传感器测量输出与不确定性值的偏差用于一种基于多模型的混合卡尔曼滤波器组算法中,利用贝叶斯方法计算每个传感器在健康模式和不同故障模式下的条件概率,然后根据最大概率准则进行传感器故障检测与隔离,克服了阈值难以选取的问题。针对某型涡扇发动机传感器发生偏置故障、漂移故障和间歇性故障的情形进行仿真验证,并对比了不同传感器之间的检测与隔离精度。结果表明:所提出的方法可以在更高水平的退化下诊断出发动机传感器常见的故障,混合方法对不同不确定性源具有鲁棒性。  相似文献   

16.
    
《中国航空学报》2022,35(9):314-332
An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagnosis. However, due to the performance differences caused by the tolerance of engine manufacturing and assembly, and performance degradation during continuously stringent environmental regulations, the model accuracy is severely reduced. In this paper, an adaptive modification method of turbofan engine nonlinear Component-Llevel Model (CLM) based on Long Short-Term Memory (LSTM) Neural Network (NN) and hybrid optimization algorithm is pro-posed. First, a dynamic compensator with a combined LSTM NN architecture is constructed to compensate for the initial error between the experimental data and CLM of a turbofan engine under health condition. Then, a sensitivity analysis approach based on the entropy coefficient and technique for order preference by similarity to an ideal solution integrated evaluation is developed to choose the unmeasurable health parameters to be adjusted. Finally, a parallel hybrid optimization algorithm is developed to complete the adaptive model modification when the performance degrades. The proposed method is verified on a military low-bypass twin-spool turbofan engine, and the experimental results show the effectiveness of the proposed method.  相似文献   

17.
民用航空含Ω型长桁复合材料加筋壁板制造技术研究   总被引:1,自引:0,他引:1  
含Ω型长桁的复合材料加筋壁板由于其结构上的优势,在民用大飞机上被越来越多地采用。然而,此种类型的加筋壁板在共固化成型过程中存在Ω型长桁如何加压的问题,特别是在有严格的适航符合性审查要求的民用航空产品制造领域,进一步提高了制造难度。经过多次试验,最终采用薄壁橡胶气囊成型法制造出符合设计要求和适航要求的含Ω型长桁加筋壁板。  相似文献   

18.
安全是民航飞行永恒的主题。作为安全最直接的保障者和消灭事故的最后防线是飞行员,他们肩负着巨大的压力。保证安全不只是某个飞行员的责任,而是整个机组的责任。只有在科学高效的机组配合条件下,才能充分发挥整个机组的潜力,最大限度地保障飞行安全。飞行员一直是男性占主体,随着民航、军航女性飞行员的加入和成长,飞行机组的配合方式有所改变,这里主要探讨飞机飞行过程中女性飞行员加入以后机组配合的特点,及如何在实际中提高异性机组配合能力。  相似文献   

19.
基于LSTM和CNN的高速柱塞泵故障诊断   总被引:1,自引:0,他引:1  
魏晓良  潮群  陶建峰  刘成良  王立尧 《航空学报》2021,42(3):423876-423876
针对高速轴向柱塞泵容易发生空化,且目前空化故障诊断方法存在依赖手工特征提取、鲁棒性不高的问题,提出了一种基于长短时记忆(LSTM)和一维卷积神经网络(1D-CNN)相结合的空化故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同空化等级下的壳体振动信号。利用LSTM和1D-CNN搭建的分类模型对不同进口压力情况下的振动信号进行空化等级识别。实验结果表明:提出的方法能够准确地识别出4类不同的空化等级,准确率高达99.5%,同时在不附加降噪方法的情况下,具有良好的鲁棒性,在0 dB信噪比的情况下,识别准确率高达87.3%。  相似文献   

20.
为解决基于气动热力学方程建立发动机起动模型时存在的困难,本文以某型发动机起动调整试验的试车数据为样本,使用径向基函数(RBF)神经网络对在某一大气条件下的发动机起动模型进行了辨识;并使用另外一组试车数据,通过辨识模型对起动过程进行了仿真。结果表明,用RBF神经网络辨识发动机起动模型,具有方法简单、学习速度快、辨识精度较高等优点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号