首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
扩压叶栅端壁区旋涡流动显示研究   总被引:6,自引:2,他引:4  
马宏伟  蒋浩康 《航空动力学报》1997,12(3):258-262,330
通过氢气泡流动显示,获取不同攻角、不同径向间隙下扩压叶栅端壁区内各种旋涡的发生、发展、涡-涡、涡-附面层干涉的流动图画。   相似文献   

2.
Experimental investigation on a high subsonic compressor cascade flow   总被引:1,自引:0,他引:1  
With the aim of deepening the understanding of high-speed compressor cascade flow,this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow.With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases.Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures.Passage vortex is the main corner separation vortex.During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle.With higher incidence, corner separation is further deteriorated, leading to higher flow loss.Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence.Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade.Results obtained present details of high-speed compressor cascade flow,which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.  相似文献   

3.
端壁翼刀控制压气机叶栅二次流的数值研究   总被引:3,自引:3,他引:3  
对CDA常规直叶栅和4种端壁翼刀方案下叶栅内三维粘性流场进行了数值研究。分析表明,端壁不同位置上的翼刀不同程度上都阻断了近端壁区域压力面至吸力面的二次流动,翼刀上方偏向吸力面侧有反向"翼刀涡"产生,通道涡的强度被削弱;距压力面30%节距位置为安装端壁翼刀的最佳位置,可使损失降低7%~9%。计算结果和实验结果吻合较好。   相似文献   

4.
横向二次流是制约叶轮机气动负荷进一步提升的主要因素。在叶片通道内施加涡流发生器有抑制通道横向二次流的潜力,但涡流发生器的最优施加方案很难确定。基于涡流发生器经验统计模型(BAYC模型)和响应面方法建立了一种端壁涡流发生器的高效设计方法。基于这一方法,实施于NACA 65直列叶栅,得到了三种涡流发生器优化方案,并在设计工况下和非设计工况下讨论了涡流发生器对端壁横向二次流的控制机理,发现具有更大的涡流发生器高度和更多的涡流发生器数量的方案在面对大攻角下的强横向二次流情况时能够有更强的余力对横向二次流加以控制,大大扩展了叶栅的攻角适用范围。   相似文献   

5.
非轴对称端壁下高负荷压气机叶栅二次流动分析   总被引:1,自引:2,他引:1  
探讨了高负荷压气机叶栅中应用非轴对称端壁的有效性.首先利用NUMECA/Design3D优化软件包来完成了对端壁的优化,然后推导并建立了高负荷压气机叶栅出口含全部掺混损失的二次流损失的计算方法,最后在设计攻角和非设计攻角下对轴对称端壁和非轴对称端壁结构的高负荷压气机叶栅内部及出口流场进行了详细的分析.分析结果表明:在设计攻角和非设计攻角下采用非轴对称端壁均能改变端壁附近载荷分布、降低叶片通道的二次流动损失;在设计攻角下使叶栅周向质量平均总压损失减少约为9.4%,在非设计攻角(±3°)下分别减损7.7%和11.8%;当非轴对称端壁幅值为4%叶高时,二次流动损失最小.   相似文献   

6.
采用DMD方法研究叶栅不同攻角的拟序结构   总被引:1,自引:1,他引:0  
为分析平面叶栅分离流非定常拟序流动特征,对三个不同攻角下的叶栅进行了单通道的大涡模拟仿真,并采用动力模态分解(DMD)三个工况的流场结构进行了分析。DMD方法对包含复杂时空信息的叶栅分离流流场进行了解耦,剥离出了反映流场主要动力信息的模态,获得了其频率和与之对应的空间结构。并且通过DMD方法,将原本需要研究大量不同时刻的流场,转移到仅需要对少量模态的研究即可,实现了保留主要动力特征的低维近似。通过DMD分析表明:气流经过叶片前缘产生流动分离,形成不稳定的剪切涡结构,它和尾迹区脱落涡相互耦合,并形成新的拟序结构。随着攻角的增大,前缘剪切涡及其与尾迹涡的耦合也同时增强,流场变得更加复杂。   相似文献   

7.
端壁翼刀控制压气机叶栅二次流的机理研究   总被引:4,自引:0,他引:4  
对CDA压气机直叶栅和具有不同流向位置和不同几何参数的端壁翼刀叶栅内三维粘性流场进行了数值模拟.结果表明,端壁翼刀主要通过阻断马蹄涡压力面分支汇入通道涡和有效产生反向翼刀涡来控制二次流.加装在距叶片压力面30%节距处且高度为1/3来流附面层厚度、占据前3/4流道的翼刀布置方式为本文所给出的最佳翼刀位置.  相似文献   

8.
构成轴流压气机出口不稳定的主要影响因素   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨构成转子出口不稳定性的主要影响因素,借助三维N-S方程数值求解轴流压气机孤立转子流场,计算了转子出口沿主流方向的不稳定参数并与实验结果加以对比,两者吻合较好。计算结果分析表明:转子下游的不稳定性主要由紊流脉动动能和尾迹亏损构成,且前者占主要成分。采用双方程紊流模型的三维N-S方程求解结果,可以有效地模拟转子出口不稳定参数沿径向的分布,对进一步深入探索转子出口流动的非定常效应具有重要的理论意义  相似文献   

9.
用端壁造型减小涡轮叶栅二次流损失的数值研究   总被引:5,自引:9,他引:5       下载免费PDF全文
分别对常规叶栅、下端壁上凸和下端壁下凹叶栅的流场进行了详尽的数值模拟,通过将下端壁上凸和下端壁下凹叶栅中的通道涡的发生、发展过程与常规叶栅进行对比分析,对非轴对称端壁造型减小涡轮叶栅二次流损失的机理进行了初步的探讨。结果表明:下端壁上凸叶栅出口处的总压损失比常规叶栅下降了4.2%,下端壁下凹叶栅出口处的总压损失比常规叶栅增加了11.9%;在下端壁上凸叶栅中,下通道涡的形成比常规叶栅和下端壁下凹叶栅滞后,失去了充分发展的"机会"。这是非轴对称端壁造型能够减小涡轮叶栅二次流损失的根本原因。  相似文献   

10.
不同长度端壁翼刀对压气机叶栅二次流影响的数值研究   总被引:5,自引:5,他引:5  
对可控扩散叶型(CDA)常规直叶栅和三种具有不同长度和流向位置的端壁翼刀叶栅内的三维粘性流场进行了数值模拟。结果表明,不同长度端壁翼刀都不同程度上改善了栅内的气流流动状况;较小长度的翼刀所产生的附加损失也较小;反向翼刀涡的产生与流道内横向流动的强弱息息相关。计算结果表明,占据前3/4流道长的翼刀为最佳翼刀。   相似文献   

11.
本文对一种大弯度可控扩散叶型叶栅槽道和栅后流场进行了测量 ,并对端壁和叶片表面进行了流动显示。通过研究 ,对叶栅槽道特别是端部气体流动 ,旋涡结构以及二次流影响有深入的了解。本文的工作对于改进压气机端部流动条件 ,发展第二代可控扩散叶型有重要的实际意义。  相似文献   

12.
一种新非轴对称端壁成型方法的数值研究   总被引:8,自引:2,他引:6  
根据叶栅内部二次流形成和发展的机理, 应用正弦函数和多项式函数建立了一种叶栅非轴对称端壁成型方法.采用三维时均可压缩N-S方程组求解技术, 数值研究了采用所建立的非轴对称端壁成型方法设计的跨音速直列叶栅的流动特性, 分析讨论了建立的非轴对称端壁成型方法的效果及其对叶栅流动特性的影响.计算结果表明:所建立的非轴对称端壁可以有效地抑制和延迟叶栅通道中二次流涡系的发展, 沿整个叶栅流道内总压系数明显降低, 成型过程中幅值控制函数中最大幅值约占7.5%叶高为宜, 叶栅出口位置处总压损失降低了约5.6%.   相似文献   

13.
为提高尾迹对涡轮端区二次流影响的认识,利用尾迹降低端区损失,采用了数值模拟的方法对T106A非定常工况下的叶栅流动进行模拟,辅以实验进行校核。以上游尾迹对端区附面层的抬升作用和上游尾迹对叶栅通道前部涡系结构的破坏作用为切入点,分析尾迹对端区二次流非定常发展过程的影响。研究发现尾迹中心离开叶栅通道时,尾迹对叶栅端区二次流起抑制作用;当尾迹尾部离开叶栅通道时,尾迹卷起的轮毂附面层激励了端区二次流,使二次流更加活跃。  相似文献   

14.
带吸力面小翼的压气机叶栅变间隙特性实验   总被引:1,自引:0,他引:1  
为了进一步揭示吸力面小翼在不同叶尖间隙条件下的影响机理,开展了有/无吸力面小翼的压气机叶栅变间隙特性实验.结果表明:与无间隙叶栅相比,叶尖相对间隙为1%时引入的泄漏流可以有效抑制叶片吸力面/端壁角区三维分离的产生,叶栅总损失和气动堵塞程度最低,此时为研究的4种间隙工况中的最佳间隙工况.吸力面小翼在此间隙下降低了泄漏涡强度的同时使通道涡增强,叶片吸力面重新出现了三维分离流动,叶栅总损失和堵塞程度均有所增加.在叶尖相对间隙为2%和3%时,带吸力面小翼叶栅中叶尖分离涡增强,主导叶尖区流动的泄漏涡强度减弱,两种间隙下叶栅总损失系数分别降低了8.9%和12.5%,堵塞系数分别降低了6.9%和6.3%.在研究的3种非零间隙条件下吸力面小翼降低了叶栅气动损失对叶尖间隙变化的敏感性,减弱了叶尖泄漏涡造成的叶栅出口气流角的欠偏转/过偏转程度.   相似文献   

15.
叶片弯曲对叶顶间隙流动影响的实验研究   总被引:2,自引:0,他引:2  
详细测量了直叶栅与正、反弯叶栅叶顶间隙中分面以及叶栅前、后横截面内气动参数分布,并对壁面(包括上、下端壁与叶片表面)流场进行了墨迹显示。对比3 套叶栅的实验结果发现:叶片正弯削弱了泄漏流与端壁流道内横向二次流,泄漏涡与上通道涡合并,二次涡分离由整体分离转变为局部分离,既减少了相对漏气量又降低了掺混损失;叶片反弯加强了泄漏涡与上通道涡的相互作用,虽然使相对漏气量减少,但却增大了掺混损失。  相似文献   

16.
单转子轴流压气机不同状态下进出口三维时均流场   总被引:2,自引:1,他引:1  
用圆锥四孔高频压力探针测量了单转子轴流压气机不同流量状态下, 转子进出口三维时均流场。结果表明, 压气机转子进口流动沿周向呈现较强的周期性变化, 尤其在近失速状态, 叶片压力面侧总压和静压高, 吸力面侧总压和静压低, 而前缘附近轴向速度低、相对气流角大。   相似文献   

17.
喷射角对涡轮叶栅端壁气膜冷却的气动影响   总被引:4,自引:1,他引:4       下载免费PDF全文
刘高文  刘松龄 《推进技术》2004,25(3):206-209
在大尺寸低速平面叶栅风洞中,对前缘上游有单排气膜孔的涡轮导向叶栅端壁气膜冷却进行了气动实验。在喷射角25°,35°和45°以及吹风比1,2,3下详细测量了叶栅通道中的三维流场,得到了全速度和二次流速度分布,并由此计算了二次流动能的大小。着重研究了喷射角对端壁气膜冷却的气动特性和对叶栅通道中特别是端壁附近的流场结构的影响。数据表明减小喷射角度可以减小通道涡的强度和尺寸,使冷气射流核心更贴近壁面,但同时也明显地增大了壁面附近的气流速度。在高吹风比下,35°喷射时射流将冷气输运到压力边的能力比25°喷射和45°喷射都要强。  相似文献   

18.
叶顶抽吸对叶栅间隙泄漏流动的控制研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张博涛  刘波  赵航 《推进技术》2020,41(8):1701-1709
为了控制压气机叶尖间隙泄漏流动,减少叶尖泄漏流和泄漏涡对压气机内部流场带来的不利影响,数值模拟研究了在压气机叶栅叶顶位置沿叶片中弧线开槽抽吸对叶尖泄漏流的控制效果,并与端壁流向开槽抽吸方案进行了对比分析。研究结果表明:叶顶抽吸和端壁抽吸直接通过影响叶尖泄漏流的结构形态,减弱间隙泄漏流强度和影响范围,从而提升压气机/叶栅性能。叶顶中游抽吸方案Slot TB对于泄漏流与泄漏涡的控制效果优于叶顶上游抽吸方案Slot TA;而机匣端壁上游抽吸方案Slot CA相较于中游抽吸方案Slot CB对叶顶流场改善效果更佳。叶顶抽吸和端壁抽吸在抽吸量为0.6%时分别可以使总压损失系数下降约3.3%和7.2%。  相似文献   

19.
涡轮平面叶栅非轴对称端壁优化设计   总被引:2,自引:1,他引:1  
开发了一套造型灵活直观、网格生成速度快的涡轮平面叶栅非轴对称端壁优化设计工具,该工具的核心技术是非均匀有理B样条(NURBS)曲面造型和网格变形.在此基础上以商业软件Isight为优化驱动器,以CFX为求解器,搭建了非轴对称端壁优化设计流程.以Pack B涡轮平面叶栅为例,对其进行了非轴对称端壁优化设计.优化后涡轮平面叶栅总压损失系数减小了12.96%.结果表明:涡轮平面叶栅端部的静压分布改变削弱了涡轮平面叶栅通道中马蹄涡、通道涡的强度,提高了涡轮平面叶栅的气动性能.   相似文献   

20.
This paper introduces a novel design method of highly loaded compressor blades with air injection.CFD methods were firstly validated with existing data and then used to develop and investigate the new method based on a compressor cascade.A compressor blade is designed with a curvature induced pressure-recovery concept.A rapid drop of the local curvature on the blade suction surface results in a sudden increase in the local pressure,which is referred to as a curvature induced ‘Shock'.An injection slot downstream from the ‘Shock' is used to prevent ‘Shock' induced separation,thus reducing the loss.As a result,the compressor blade achieves high loading with acceptable loss.First,the design concept based on a 2D compressor blade profile is introduced.Then,a 3D cascade model is investigated with uniform air injection along the span.The effects of the incidence are also investigated on emphasis in the current study.The mid-span flow field of the 3D injected cascade shows excellent agreement with the 2D designed flow field.For the highly loaded cascade without injection,the flow separates immediately downstream from the ‘Shock';the initial location of separation shows little change in a large incidence range.Thus air injection with the same injection configuration effectively removes the flow separation downstream from the curvature induced ‘Shock' and reduces the size of the separation zone at different incidences.Near the endwall,the flow within the incoming passage vortex mixes with the injected flow.As a result,the size of the passage vortex reduces significantly downstream from the injection slot.After air injection,the loss coefficient along spanwise reduces significantly and the flow turning angle increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号