首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
某型弹用涡喷发动机启动加速控制规律设计   总被引:4,自引:2,他引:4       下载免费PDF全文
为满足某弹用涡喷发动机大空域风车启动加速要求,分析了发动机控制系统原控制方案的局限性,通过引入新的控制输入参数提出了新的控制方案,进行了涡喷发动机新方案控制规律研究和设计。通过地面台架与高空模拟台验证试验结果表明,新方案控制规律满足发动机大空域风车启动加速要求,新控制方案是切实可行的,某涡喷发动机数字电子控制系统控制规律设计一次成功。  相似文献   

2.
小高空台高空模拟试验调试   总被引:1,自引:0,他引:1  
根据航空涡桨和涡轴发动机通用规范的要求,涡轴发动机在研制过程中必须进行高空模拟试验。为此,中国燃气涡轮研究院自行设计和建成了国内首座涡轴发动机高空模拟试车台(简称小高空台)。在小高空台设备性能调试结束之后,又成功地完成了涡轴发动机高空模拟调试。涡轴发动机高空模拟试验调试不仅是对涡轴发动机高空模拟试验方法的探索,而且也是水力测功器在低温负压下的验收调试。小高空台的建成将为我国自行研制涡轴发动机提供一个必需的高空模拟试验平台。  相似文献   

3.
发动机高空台测试系统是高空台的一个重要组成部分.本文介绍了涡轴涡桨发动机高空模拟试车台测试系统的功能与特点,通过分析试验参数测量的特点对测试方案选择、硬件组成和软件开发作了详细的说明.实际使用结果表明:该测试系统性能稳定可靠、功能完善,是一套值得推广的通用车台测试系统.  相似文献   

4.
航空发动机高空模拟试验正交设计研究   总被引:1,自引:0,他引:1  
通过分析现有试验设计方法存在的不足和正交试验设计方法的优势,提出采用正交试验设计方法进行航空发动机高空模拟试验设计的思路。对高空模拟试验的项目、指标、因素和水平进行分析,根据不同的试验项目和指标确定试验设计的因素及水平;再选择适合的正交表并进行表头设计,将试验因素和水平按照一定的原则填入正交表后获得正交试验方案;最后以航空发动机高空稳态性能试验为对象进行正交试验设计,获得的试验方案在高空台效率提升等方面具有一定的指导意义。  相似文献   

5.
简述了中俄两国高空台的计量标定及交叉校准中的量值溯源和传递关系 ,以及我国高空台 (SB10 1)在标定与试验测试过程中所采取的过程控制措施。表明高空台基本符合国际标准 ,满足国军标对发动机高空模拟试验稳态性能参数测试要求的规定。  相似文献   

6.
航空发动机高空台的发展与展望   总被引:6,自引:0,他引:6  
功能完备和技术先进的高空台是发展完善、耐久、可靠的高性能航空发动机的关键试验平台。我国高空台的设备能力与技术水平居亚洲第一、世界第五.在我国多型在研、在役航空涡喷、涡扇、涡轴发动机研制中发挥了重要作用。本文分析了高空台与高空模拟试验技术的发展现状,探讨了我国高空台建设和高空模拟试验技术研究的发展方向。  相似文献   

7.
介绍了某涡喷发动机在CS-01高空台做接通加力改进方案高空模拟试验研究的情况.经高空台试验调整后,发动机在三种空中中间状态以及三种空中慢车状态全部都能接通加力,并且火焰稳定,发动机工作正常,为装备该发动机的飞机进行空中试飞、接通加力,提供了依据和安全保障.  相似文献   

8.
本文介绍连管式试车台涡轮喷气发动机高空模拟试验的主要模拟技术。概要地说明了涡轮喷气发动机的模拟条件,具体地阐述了涡轮喷气发动机高空模拟试验的模拟过程,提高模拟高度、扩大试车范围的一些措施,还提出了试车中应注意的主要技术问题。 这个试车台已用本文所述方法为五个型号、九个机种的涡轮喷气发动机做了近500次高空模拟试验。  相似文献   

9.
航空发动机高空模拟试车台(简称高空台)动静架连接处存在气流泄漏或注入现象,导致低温试验时湿空气进入发动机,影响试验安全。针对该问题,根据理论分析和数值仿真,设计了一种基于中段进气的新型篦齿密封结构,建立了高空台动静架连接结构数值模型,分析了篦齿密封流场特性及泄漏特性。当进气口处于理想零泄漏状态时,控制口压力与进气口压力成正比;当控制口进气时,温度对封严效果基本无影响。本研究为减少高空模拟试车台动静架连接处主流道流量损失、提高试验安全系数,提供了一种新的高效密封结构。  相似文献   

10.
朱青 《推进技术》1995,16(1):80-86,19
介绍涡轮喷气发动机在高空模拟试车台上的排气反压模拟试验技术,并详述了提高涡喷发动机高空模拟高度的若干措施。利用这些试验技术,已成功地进行了数百次涡喷发动机高空模拟试验。  相似文献   

11.
本文简要介绍了俄罗斯中央航空发动机研究院(AM)的连接式高空台空气系统特点、工作原理及海平面标准大气静止条件下进口空气流量65kg/s级的航空涡轮喷气发动机高空模拟试验技术和试验方法。  相似文献   

12.
介绍了某涡喷发动机在CS-01高空台做接通加力改进方案高空模拟试验研究的情况,经高空台试验调整后,发动机三种空中中间状态以及三种空中慢车状态全部都能接通加力,并且火焰稳定,发动机工作正常,为装备该发动机的飞机进行空中试飞,接通加力,提供了依据和安全保障。  相似文献   

13.
为解决弹用发动机控制系统缺少发动机进口参数测量,无法实时对PI控制参数进行相似原理修正,从而导致地面点控制参数在高空不适用,产生发动机高空转速超调这一问题,基于压气机出口总压P_3重构发动机进口总压P_1对PI控制参数进行修正,设计了1种发动机进口参数测量不全条件下弹用发动机转速高空超调控制的方法。通过全数字仿真、半物理模拟试验、高空模拟试验及高空飞行试验验证该方法的有效性。  相似文献   

14.
航空发动机高、低温起动及高原起动试验技术探讨   总被引:4,自引:4,他引:4  
根据GJB241对航空发动机高、低温起动及高原起动试验的要求,分析了高、低温及高原环境条件对航空发动机起动性能的影响机理;阐述了利用自然环境条件、低温起动室及高空模拟试验台进行航空发动机高、低温起动及高原起动试验的优、缺点;结合国产斯贝MK202发动机分别在英国R.R.公司低温起动室和高空模拟试车台进行的低温起动试验方法和俄罗斯中央航空发动机研究院(CIAM)高空台的发动机高、低温起动及高原起动试验的方法,提出了符合我国国情的航空发动机高、低温起动及高原起动试验的实施途径。   相似文献   

15.
即将建成投产的SB101高空试车台   总被引:1,自引:1,他引:0  
高空模拟试车台作为航空发动机研制的关键设备已越来越被人们所重视。本文就我国第一座连续气源航空发动机高空模拟试车台的试验项目,试验范围,主要设备及其性能,高空试验模拟方法等作了较详细的介绍。并根据调试结果,给出了气源机组作单级,二级,三级串联抽气的特征。  相似文献   

16.
从航空发动机高空模拟试验台模拟压力要求出发 ,介绍高空台排气系统的作用、组成和排气系统的流通 ,对抽气机和排气扩压器的特性作了概述 ,对高空舱后压力PD 调节系统、Ⅰ级抽气总管压力P M 调节系统作了说明 ,叙述发动机稳态试验、加力过渡态试验、加减速过渡态试验时高空舱后舱压力PD 和Ⅰ级抽气总管压力P M 控制方法 ,指出发动机在稳态试验和过渡态试验时高空舱后舱压力PD 的影响因素和排气系统自动调节阀 (999)在管网中的安装位置。  相似文献   

17.
对照国际和国内有关标准或规范,从高空台的任务、类型、结构布局、模拟方法、试验流程、参数测量,数据处理及发动机高空性能评定等方面,分析了我国高空台与国际标准的衔接情况;并指出,与俄罗斯中央航空发动机研究院ц-4H高空舱对比试验的成功,证明我国高空台的互换性良好。  相似文献   

18.
杨育武 《推进技术》2004,25(6):526-529
根据某型小涡喷发动机的控制要求,制定了数字电子控制系统的控制方案,设计了发动机起动、加 减速和稳态控制的控制规律。研制了数字电子控制器,完成了控制软件设计,并进行了控制系统半物理模拟试验。试验结果表明,设计的数字电子控制系统性能良好,满足某型小涡喷发动机的控制要求。  相似文献   

19.
大型运输机发动机高空试验方法比较   总被引:1,自引:0,他引:1  
本文介绍了大型运输机发动机高空试验需求,以及两种高空试验方法,即高空台模拟试验和飞行台试验,重点阐述了这两种试验方法各自的优缺点,突出了高空模拟试验在大型运输机发动机研制中的重要地位,从而表明了试验基地加速SB101高空模拟试车台2号高空舱续建具有极其重要的意义.  相似文献   

20.
高空台飞行环境模拟系统数字建模与仿真研究   总被引:1,自引:3,他引:1       下载免费PDF全文
为了分析新建高空台飞行环境模拟系统试验设备动态控制特性,研究各子系统关联耦合性,开展了系统建模和仿真研究。采用相似理论和部件级建模方法针对进排气关键调节阀、液压伺服系统和管道容腔等进行了数学建模研究,建立了相应设备特性模型,设计了双闭环进排气压力自动控制结构。在对实际控制系统功能性分解基础上,构建了飞行环境模拟系统数字仿真平台,并在数字仿真平台上进行了压力动态控制仿真。仿真结果表明各子系统压力动态建立过程与真实高空模拟试验过程趋势一致,能够反映真实系统的压力动态过程,证明了系统数学模型的合理性。利用仿真方法模拟了发动机流量变化对各控制子系统的影响,稳压腔压力最大偏差为4.5kPa,发动机进气压力最大偏差为3.4kPa,排气压力最大偏差为1.5kPa,验证了飞行环境模拟系统控制性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号