首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Amphibians possess the ability to vomit in response to a variety of stimuli that provoke emesis in mammals. Pharmacological studies have establish that the ejection of gastric contents and the basic mechanism for vomiting have been phylogenetically conserved among these tetrapods. As part of on-going comparative studies on emesis in vertebrates, we previously documented that some postmetamorphic anurans and salamander larvae experience motion-induced emesis when exposed to the provocative stimulus of parabolic aircraft flight. However, more recent experiments suggest that there are strict conditions for inducing emesis in amphibians exposed to parabolic flight and that amphibians are not as sensitive to this stimulus as mammals. Further studies on emesis in lower vertebrates may help us understand the processes that cause emesis in abnormal gravitational regimes.  相似文献   

2.
A BRIC (Biological Research In a Canister) experiment to investigate the effects of reduced gravity at the molecular level using Arabidopsis has been initiated. In preparation for a space flight experiment, a series of ground-based studies were conducted. Results from these studies indicate that: 1) up to 20,000 seeds can be germinated on a 100 mm diameter Petri plate, 2) nylon membrane is the best surface for recovery of plant material after freezing, 3) depending on the age of the seedlings at the time of freezing, 20 to 40 g of tissue can be obtained from Petri plates that fit in a single canister; 4) tissue from one canister yields adequate amounts of RNA to perform differential display to isolate gravity-regulated genes. Our results indicate that the proposed BRIC experiment is feasible and can provide valuable information on the possible effects of microgravity on gene regulation.  相似文献   

3.
Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness-phenomena (SMS, a kinetosis). It has been argued that SMS during PAFs might not be based on microgravity alone but rather on changing accelerations from 0 g to 2 g. We test here the hypothesis that PAF-induced kinetosis is based on asymmetric statoliths (i.e., differently weighed statoliths on the right and the left side of the head), with asymmetric inputs to the brain being disclosed at microgravity. Since fish frequently reveal kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), we investigated (1) whether or not kinetotically swimming fish at microgravity would have a pronounced inner ear otolith asymmetry and (2) whether or not slow translational and continuously changing linear (vertical) acceleration on ground induced kinetosis. These latter accelerations were applied using a specially developed parabel-animal-container (PAC) to stimulate the cupular organs. The results suggest that the fish tested on ground can counter changing accelerations successfully without revealing kinetotic swimming patterns. Kinetosis could only be induced by PAFs. This finding suggests that it is indeed microgravity rather than changing accelerations, which induces kinetosis. Moreover, we demonstrate that fish swimming kinetotically during PAFs correlates with a higher otolith asymmetry in comparison to normally behaving animals in PAFs.  相似文献   

4.
We previously demonstrated the efficiency of normal vision/unusual vestibular cues conflict to induce motion sickness. In the present study, we investigate whether, inversely, unusual visual information/normal vestibular function conflict also elicited motion sickness. The experiments were again carried out in dynamic balance conditions to increase proprioceptive input. Circular translation of the visual field with diplopia were produced by rotating Fresnel prismatic glasses. The stimulation triggered SMS-like symptoms and dynamic balance disturbance. A positive relationship was found between discomfort and balance disturbance. Unusual visual information should therefore be included in Space Motion Sickness susceptibility testing.  相似文献   

5.
Space motion sickness (MS) is one of the most important problems in the field of space medicine. In order to prevent space MS, a new medicine, PMPA, has been prepared by means of synthesizing in our laboratory. The purposes of this study were to set up animal models of PMPA against MS, and to observe its effects on anti-MS, and to prove its function of antagonism to choline. Eight cats, forty rabbits and two hundred and ten rats were selected as animal subjects. The parallel swing stimulus, a method causing the reversal syndromes and tests of anti-choline function were used in our experiments. The results are as follows: (1) The score of MS symptoms in cats with PMPA or scopolamine (SCOP) is significantly lower than that in cats with placebo (p<0.01), while the incidences of efficiency and prevention of PMPA (87.5%, 75%) are higher than those of SCOP (75.0%, 50%) in cats. (2) PMPA of 1.6 mg/kg or 0.8 mg/kg could antagonize the reversal syndromes and repress reversal rotation significantly in rabbits like SCOP in comparison with placebo (p<0.01). (3) PMPA could inhibit tremor evoked by oxotremorine or by nicotine-procaine in rats like SCOP, and play an important role in the antagonism to central M-choline and N-choline receptors. The animal experiments demonstrate that PMPA is an effective medicine against MS with antagonism function to choline.  相似文献   

6.
The bubble motion is described as a function of thermal variation of surface tension of a bubble, temperature gradient, gravity, bubble diameter, viscosity and density. The relations among those values are shown in graphs, from which the requirements for the measurements to ascertain the velocity due to thermal variation of surface tension are made clear. According to these requirements, the experiments on the velocity of the bubble in a temperature gradient were conducted and the Marangoni effect on a bubble motion was ascertained.  相似文献   

7.
The conversion of solid waste into useful resources in support of long duration manned missions in space presents serious technological challenges. Several technologies, including supercritical water oxidation, microwave powered combustion and fluidized bed incineration, have been tested for the conversion of solid waste. However, none of these technologies are compatible with microgravity or hypogravity operating conditions. In this paper, we present the gradient magnetically assisted fluidized bed (G-MAFB) as a promising operating platform for fluidized bed operations in the space environment. Our experimental and theoretical work has resulted in both the development of a theoretical model based on fundamental principles for the design of the G-MAFB, and also the practical implementation of the G-MAFB in the filtration and destruction of solid biomass waste particles from liquid streams.  相似文献   

8.
9.
A system has been developed to enable the normal development of aborted very early uterine avian embryos, outside the female's uterus. The shell-less aborted egg was put into a foster shell of a sister egg, previously laid by the same female. The empty space between the shell and aborted egg was filled with artificial uterine fluid. The reconstructed eggs were incubated at 42 degrees C for 30 hours in a vertical position. The atmosphere contained a high concentration of CO2 (8-10%). At the termination of the 30 h the eggs were transferred to incubation at 37 degrees C in normal atmospheric conditions. Normal development has been recorded for a certain percentage of eggs incubated up to 12 days. In other cases abnormalities, arrested development or development of extraembryonic membranes only, without a sign of an embryonic axis, have been observed. The three important conclusions from the above experiments were: 1. It is possible to develop a closed, self-contained system, disconnected from the female's body, that would support the development of early uterine embryos. 2. The incidence of embryo-less extraembryonic membranes in such a system, is correlated with the degree of detachment of the "yolk" from the outer envelopes. 3. Such a system can be further developed into an experiment suited for microgravity conditions which will be an alternative to an experiment with live birds. The experiment will be aimed at testing the importance of gravity in changing the radially symmetrical avian blastoderm into a bilaterally symmetrical blastoderm.  相似文献   

10.
A review is being presented concerning behavioural, biochemical, histochemical and electronmicroscopical data on the influence of altered gravitational forces on the swimming performance and on the neuronal differentiation of the brain of cichlid fish larvae and adult swordtail fish that had been exposed to hyper-gravity (3g in laboratory centrifuges), hypo-gravity (>10(-2) g in a fast-rotating clinostat) and to near weightlessness (10(-4) g aboard the Spacelab D-2 mission). After long-term alterations of gravity (and parallel light deprivation), initial disturbances in the swimming behaviour followed by a stepwise regain of normal swimming modes are induced. Parallel, neuroplastic reactivities on different levels of investigation were found, such as adaptive alterations of activities of various enzymes in whole brain as well as in specific neuronal integration centers and an intraneuronal reactivity on ultrastructural level in individual brain parts and in the sensory epithelia of the inner ear. Taken together, these data reveal distinct adaptive neuroplastic reactions of fish to altered gravity conditions.  相似文献   

11.
Negative gravitaxis of Paramecium almost disappeared in solutions having specific gravity about the same as that of the organisms (1.04). The taxis turned to positive in solutions of specific gravity 1.08. Using a drop shaft at the Japan Microgravity Center, Hokkaido (JAMIC) we examined how swimming behaviour in these media was modified by changing gravitational conditions before, during and after free-fall. Tracks of swimming cells recorded on videotape indicate that the swimming cells continued upward and downward shift depending on the specific gravity of the external medium under 1-g conditions and these vertical displacements disappeared immediately after the moment of launch. The effectiveness of changing gravity to induce displacement of the cells seems to depend on the orientation of the cells to gravity. These results suggest a corelation between vertical displacement of the cell through the medium and a gravitactic mechanism in Paramecium.  相似文献   

12.
The orientation behavior of Paramecium changed in a similar way after transition to conditions of free-fall in a sounding rocket and after transition to conditions of simulated weightlessness on a fast rotating clinostat. After a period of residual orientation, Paramecium cells distributed themselves randomly 80 s (120 s) after onset of free-fall (simulated weightlessness). Swimming velocity increased significantly; however, the increase was transient and subsided after 3 min in the rocket experiments, while the velocity remained enhanced even during 2 h of rotation on a fast clinostat. Trichocysts were present and without morphological changes in Paramecium cells which had been exposed to a rocket flight, as well as to fast or slow rotation on a clinostat. Regeneration of the oral apparatus of Stentor and morphogenesis of Eufolliculina proceeded normally on the clinostat. The results demonstrate that the clinostat is a useful tool to simulate the conditions of weightlessness on earth and to detect gravisensitive cellular functions.  相似文献   

13.
Cichlid fish larvae were reared from hatching to active free swimming under different gravity conditions: natural environment, increased acceleration in a centrifuge, simulated weightlessness in a clinostat and near weightlessness during space flight. Cytochrome oxidase activity was analyzed semiquantitatively on the ultrastructural level as a marker of regional neuronal activity in a primary, vestibular brainstem nucleus and in gravity receptive epithelia in the inner ear. Our results show, that gravity seems to be positively correlated with cytochrome oxidase activity in the magnocellular nucleus of developing fish brain. In the inner ear the energy metabolism is decreased under microgravity concerning utricle but not saccule. Hypergravity has no effect on cytochrome oxidase activity in sensory inner ear epithelia.  相似文献   

14.
Biochemical analyses of the brain of Cichlid fish larvae, exposed during their very early development for 7 days to an increased acceleration of 3g (hyper-gravity), revealed a decrease in brain nucleoside diphosphate kinase (NDPK) as well as creatine kinase (BB-CK) activity. Using high performance liquid chromatography (HPLC) the concentrations of adenine nucleotides (AMP, ADP, ATP), phospliocreatine (CP), as well as of nicotineamide adenine dinucleotides (NAD, NADP) were analyzed in the brain of hyper-g exposed larvae vs. 1g controls. A slight reduction in the total adenine nucleotides (TAN) as well as the adenylate energy charge (AEC) was found. In parallel a significant increase in the NAD concentration and a corresponding decrease in NADP concentration occurred in larva's hyper-g brains vs. 1 g controls. These results give further evidence for an Influence of gravity on cellular level and furthermore contribute to a clarification of the cellular signal-response chain for gravity perception.  相似文献   

15.
Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.  相似文献   

16.
The amyloplasts of root statocytes are considered to be the perceptors of gravity. However, their displacement and the starch they contain are not required for gravisensing. The mechanism of the transduction of gravistimulus remains therefore controversial. It is well known that the amplitude of the stimulus is dependent upon the intensity of the acceleration and the inclination of the root with respect to gravity. This strongly supports the hypothesis that the stimulus results in a mechanical effect (pressure or tension) on a cellular structure. Three cellular components are proposed as possible candidates for the role of transducer: the actin filaments, the endoplasmic reticulum and the plasma membrane with its ion channels. Recent results obtained in the frame of the IML 1 Mission of Spacelab show that the endoplasmic reticulum should rather be responsible for the termination of the stimulus. The contacts of amyloplasts with the distal ER could therefore be involved in the regulation of root growth.  相似文献   

17.
MELISSA (Micro-Ecological Life Support System Alternative) has been conceived as a micro-organism based ecosystem intended as a tool for developing the technology for a future artificial ecosystem for long term space missions, as for example a lunar base. The driving element of MELISSA is the recovering of edible biomass from waste, CO2, and minerals with the use of sun light as energy source. In this publication, we focus our attention on the potential applications of MELISSA for a precursor mission to the Moon. We begin by a short review of the requirements for bioregenerative Life Support. We recall the concept of MELISSA and the theoretical and technical approaches of the study. We present the main results obtained since the beginning of this activity and taking into account the requirements of a mission to the Moon we propose a preliminary experiment based on the C cycle of the MELISSA loop.  相似文献   

18.
This paper reviews possible psychological criteria for selection at individual level (personality, psychological stability, competence, social skills) as well as at crew level (crew size, gender, compatability, group homeostasis). Once astronauts have been selected an important effort will have to be made pre-flight to prepare the crew to the autonomy necessary for a Mars trip. During the mission psychological support will be important, but probably limited by the mission constraints. At this stage, mission success will probably rely mainly on the capacity of the crew to prevent and manage crises internally. Post-flight psychological support is necessary to help astronauts to readapt to a normal way of life on Earth.  相似文献   

19.
Recently a gravisensitivity of the acellular slime mold Physarum polycephalum, which possesses no specialized gravireceptor, could be established by conducting experiments under simulated and under real near weightlessness. In these experiments macroplasmodia showed a modulation of their contraction rhythm followed by regulation phenomena. Until now the perception mechanism for the gravistimulus is unknown, but several findings indicate the involvement of mitochondria: A) During the impediment of respiration the 0g-reaction is inhibited and the regulation is reduced. B) The response to a light stimulus and the following regulation phenomena strongly resemble the behavior during exposure to 0g, the only difference is that the two reactions are directed into opposite directions. In the blue-light reaction a flavin of the mitochondrial matrix seems to be involved in the light perception. C) The contraction rhythm as well as its modulations are coupled to rhythmic changes in the levels of ATP and calcium ions, involving the mitochondria as sites of energy production and of Ca(++)-storage. So the mitochondria could be the site of the regulation and they possibly are the receptor sites for the light and gravity stimuli. Also the observation of a morphologic polarity of the slime mold's plasmodial strands has to be considered: Cross-sections reveal that the ectoplasmic wall surrounding the streaming endoplasm is much thinner on the physically lower side than on the upper side of the strand--this applies to strands lying on or hanging on a horizontal surface. So, in addition to the mitochondria, also the morphologic polarity may be involved in the perception mechanism of the observed gravisensitivity and of the recently established geotaxis. The potential role of the nuclei and of the contractile elements in the perception of gravity is also discussed.  相似文献   

20.
The Emulsion Cloud Chamber (ECC) has played important role for the cosmic-ray research. The Micro Segment Chamber (MSC) is a new generation detector evolved from the ECC, which has maximized and extended advantages of ECCs as well as overcome difficulties in the analysis of the events that occur inside the detector. The essential parts of MSC and its application to a balloon experiment for cosmic-ray electron observations are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号