首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this paper, we analyze the illumination conditions, the thermal regime, and the possibility of deposits of volatile compounds existing in the vicinity region (NSR S5 region) near the southern pole of the Moon. It has been found that there are no permanently shadowed zones near the Scott crater and the NSR S5 region, though the temperature conditions allow the of compounds such as CH3OH, SO2, NH3, CO2, H2S, C2H4, and water to remain stable relative to evaporation for a long time (≥1 Gyr). It has been also shown that compounds like CO and CH4 cannot stably exist in these regions.  相似文献   

2.
The results of an investigation of the distribution of plasma pressure, pressure gradients, and magnetic field near the equatorial plane in the plasma ring surrounding the Earth under magneto-quiet conditions are presented. Observational data obtained during the international THEMIS mission are used. The picture of the distribution of transverse-current density near the equatorial plane was obtained under assumption of observing the magnetostatic balance condition at geocentric distances from 6 to 12R E. In estimating the integral transverse current it was accepted that in daytime sector the magnetic-field minima on magnetic field lines are not localized in the equatorial plane. Estimates of the integral transverse current were obtained, which demonstrate the possibility of closing nighttime transverse currents at geocentric distances of up to ~12R E inside the magnetosphere, which form a high-latitudinal continuation of the ring current.  相似文献   

3.
The Active Magnetospheric Particle Tracer Explorers (AMPTE) program consists of three satellites which were launched on 16th August 1984. The scientific aim of the mission is to inject lithium and barium tracer ions inside and outside the Earth's magnetosphere and to detect and monitor these ions as they diffuse through the inner magnetosphere. The first of these three satellites, the U.S. Charge Composition Explorer (CCE) was launched into an elliptical orbit of apogee 8 Re. The other two satellites are the West German Ion Release Module (IRM) and the U.K. Subsatellite (UKS), both of which were launched on the same vehicle into a highly elliptical orbit of apogee 18 Re. At discreet intervals during the mission the IRM will release ions into the solar wind, and the movement of these ions will be monitored by the UKS. Depending on the particular scientific requirement, the UKS has to be positioned accurately at a given distance behind the IRM. Initially the UKS has to be located 100 km behind the IRM, and held there for ~9 months. It will then be moved a distance of ~1 Re behind the IRM. In order to manoeuvre the UKS around its orbit, a cold gas jet system is incorporated on the satellite, allowing impulses to be applied both along and perpendicular to the orbit velocity vector. The orbit control system also has to cater for relative orbit changes due to air drag at perigee, as the IRM and the UKS have different areamass ratios. This paper presents an account of the orbit control system implemented on the UKS, together with the mathematical approach adopted, and results from manoeuvres made in the first weeks of the mission.  相似文献   

4.
A statistical analysis of the shape and location of the magnetopause according to the INTERBALL-1 satellite data for the period 1995–1997 is carried out. The instants of crossing the magnetosphere boundaries obtained by the plasma and magnetic data are compared with computations based on three empirical models, namely, Petrinec and Russel, 1996; Shue et al., 1997; and Shue et al., 1998. The state of the interplanetary medium (dynamic pressure of the solar wind plasma P d and the B z component of the interplanetary magnetic field) was determined by the measurements onboard the WIND spacecraft. We estimate the accuracy of the considered models for different groups of boundary crossings: single, multiple with small duration (less than 40 min), and multiple with large duration (more than 40 min). It is demonstrated that the small-scale motions of the boundary (<1R E) are observed more often in the dayside magnetosphere, especially near the cusp region. Large-scale boundary oscillations (>1R E) are more common in the tail region of the magnetosphere, namely, its flanks. Various models give similar results: about 50% of all events have deviations by more than 1R E from the model locations. In some cases, the deviation of the measured location of the magnetosphere boundary from the model prediction may be as large as 5–6R E for all three models considered, the actual boundary being more often located nearer to the Earth than the result of model computations. The best model is that of Shue et al., 1998, but it does not differ significantly from the other models.  相似文献   

5.
Eiges  P. E.  Zastenker  G. N.  Safrankova  J.  Nemecek  Z.  Eismont  N. A. 《Cosmic Research》2001,39(5):432-438
Based on simultaneous measurements of ion fluxes made onboard the closely separated satellites Interball-1and Magion-4, the propagation velocity of middle-scale plasma structures in the Earth's foreshock relative to the solar wind flow is estimated. The derived value of this velocity allows these structures to be identified as a fast magnetosonic wave propagating upstream of the solar wind inflowing the Earth's bow shock. An evaluation is also made of the correlation length of these disturbances in the plane perpendicular to the Sun–Earth line. This length is approximately equal to 2R E.  相似文献   

6.
An analysis of enhancements in the fluxes of electrons with energies above 300 keV registered onboard of the Coronas-F satellite in the polar regions at the boundary of the outer radiation belt is performed. Cases are revealed when the increases in question were observed consequently during multiple crossings of the outer radiation belt boundary. Localization of the revealed events relative to the auroral oval using the data of almost simultaneous observations of electrons with energies of 0.1–10 keV on the Meteor-3M satellite and OVATION model is studied. It is shown that almost all studied increases in relativistic electrons are localized at latitudes of the auroral oval. Various mechanisms which could cause the observed increases are discussed, as well as a possibility of formation of local traps of energetic particles in the high-latitude magnetosphere.  相似文献   

7.
The paper is concerned with studying the thickness of fronts of 38 interplanetary shocks detected by the BMSW instrument, which is a part of the scientific payload of the SPEKTR-R spacecraft, which was launched into a highly elliptical orbit in 2011. The main parameters of the interplanetary shocks have been calculated as follows: the ratio of thermal pressure to magnetic pressure before the front β, the angle between the shock front normal and the undisturbed magnetic field θBn, the ratio of the shock propagation velocity to the magnetosonic velocity in the undisturbed region Mms, and the shock front velocity relative to the Earth. It has been shown that the front thickness determined from the plasma parameters approximately matches the front thickness obtained from the magnetic field measurements and lies between 0.5 and 5 proton inertial lengths. In some events, the oscillations have been observed (upstream and downstream of the shock) in plasma parameters and in the magnetic field data. The length has been found to be between 0.5 and 6 proton inertial lengths for the preceding oscillations and between 0.5 and 10 proton inertial lengths for the following oscillations. The average value of the proton inertial length is 62 km.  相似文献   

8.
In each polar cap (PC) we mark out “old PC” observed during quiet time before the event under consideration, and “new PC” that emerges during the substorm framing the old one and expanding the PC total area. Old and new PCs are the areas for the magnetosphere old and new tail lobes, respectively. The new lobe variable magnetic flux Ψ1 is usually assumed to be active, i.e. it provides the electromagnetic energy flux (Poynting flux) ɛ′ transport from solar wind (SW) into the magnetosphere. The old lobe magnetic flux Ψ2 is supposed to be passive, i.e. it remains constant during the disturbance and does not participate in the transporting process which would mean the old PC electric field absolute screening from the convection electric field created by the magnetopause reconnection. In fact, screening is observed, but far from absolute. We suggest a model of screening and determine its quantitative characteristics in the selected superstorm. The coefficient of a screening is the β = Ψ202, where Ψ02 = const is open magnetic flux through the old PC measured prior to the substorm, and Ψ2 is variable magnetic flux through the same area measured during the substorm. We consider three various regimes of disturbance. In each, the coefficient β decreased during the loading phase and increased at the unloading phase, but the rates and amplitudes of variations exhibited a strong dependence on the regime. We interpreted decrease in β as a result of involving the old PC magnetic flux Ψ2, which was considered to be constant earlier, in the Poynting flux ɛ′ transport process from solar wind into the magnetosphere. Transport process weakening at the subsequent unloading phase creates increase in β. Estimates showed that coefficient β during each regime and the computed Poynting flux ɛ′ varied manifolds. In general, unlike the existing substorm conception, the new scenario describes an unknown earlier of tail lobe activation process during a substorm growth phase that effectively increases the accumulated tail energy for the expansion and recovery phases.  相似文献   

9.
The energy dependence of a fraction of ring current protons of ionospheric origin is calculated using the AMPTE/CCE data for a typical strong magnetic storm (max|D st | ≈ 120 nT). It is shown that this fraction monotonically decreases from ~ 83 to 25–30% with an increase in proton energy from 5 to 315 keV at L = 6–7 (L is the McIlwain parameter) and is 30–40% at energy 40–50 keV corresponding to the maximum of proton energy density at L = 6–7. It is demonstrated that the core of the ring current (L = 3.7–4.7) was enriched by solar protons with E ≈ 10–200 keV during the active phase of the storm (the maximum effect is reached at E ≈ 20–50 keV).  相似文献   

10.
To estimate the protective properties of a space suit against cosmic radiation the dose rates were calculated for extravehicular activity in the ISS orbit for a number of representative points of critical organs of the human body. The screening functions of the Orlan-M space suit obtained by the authors earlier are used in the calculations. In addition, the effect of East-West asymmetry of the fluxes of high-energy protons trapped by the geomagnetic field is taken into account. It is shown that during passages through the South Atlantic Anomaly, choosing the optimal orientation of astronauts in relation to the cardinal directions, one can achieve for the most critical body organs a dose rate reduction by a factor of ∼1.5–1.8 (in the maximum of solar activity) and by a factor of ∼2–2.5 (in the solar activity minimum). The obtained results can serve for obtaining more accurate estimation of radiation risk for astronauts working in the Orlan-M space suit in the near-terrestrial orbits and for elaborating practical recommendations to reduce their radiation exposures.  相似文献   

11.
Fluxes of trapped protons with energies above 70 MeV measured onboard the NOAA-15 satellite during the 23rd solar activity cycle (from 1999 to 2006) are analyzed. Comparing to similar experimental data obtained for 1976–1996, regularities of changes in the proton flux at low drift shells (L = 1.14–1.20) of the Earths’s radiation belt caused by changes in the solar activity are discussed.  相似文献   

12.
Gubenko  V. N.  Yakovlev  O. I.  Matyugov  S. S. 《Cosmic Research》2001,39(5):439-445
The results of the determination of centimeter ( = 5 cm) radio waves absorption in the radio occultation experiments, carried out using the Venera-15and Venera-16spacecraft, are presented. The altitude distribution of the absorber substance is analyzed. The absorbing layer is shown to exist at altitudes of 64 to 58 km in the near-polar regions of the planet. At middle latitudes such an absorbing layer was not found. In the altitude range from 56 to 46 km the radio wave absorption by the sulfuric acid (H2SO4) vapor is observed. The content of the sulfuric acid vapor is shown to increase with decreasing altitude: in the mid-latitude region at altitudes of 56.7 and 53 km it equals 5 and 20 ppm, respectively, and at polar latitudes the same content of H2SO4vapor is observed at altitudes of 51.2 and 47 km, respectively. A comparison of these results with the data of radio wave absorption in the = 13 cm band, obtained in the Pioneer Venus Orbiterradio occultation experiments, leads to the conclusion that the obtained values of the sulfuric acid vapor content well agree in the regions of overlap of the data.  相似文献   

13.
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.  相似文献   

14.
The degree of uncertainty that arises when mapping high-orbit satellites of the Cluster type into the ionosphere using three geomagnetic field models (T89, T98, and T01) has been estimated. Studies have shown that uncertainty is minimal in situations when a satellite in the daytime is above the equatorial plane of the magnetosphere at the distance of no more than 5 RE from the Earth’s surface and is projected into the ionosphere of the northern hemisphere. In this case, the dimensions of the uncertainty region are about 50 km, and the arbitrariness of the choice of the model for projecting does not play a decisive role in organizing satellite support based on optical observations when studying such large-scale phenomena as, e.g., WTS, as well as heating experiments at the EISCAT heating facility for the artificial modification of the ionosphere and the generation of artificial fluctuations in the VLF band. In all other cases, the uncertainty in determining the position of the base of the field line on which the satellite is located is large, and additional information is required to correctly compare the satellite with the object in the ionosphere.  相似文献   

15.
According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (М А < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.  相似文献   

16.
On the basis of numerical calculations of trajectories, the peculiarities of motion of submicron-sized particles in the Earth's plasmasphere are investigated. The most important result of these investigations is the found possibility of long-term residence of a microparticle in the Earth's vicinity. This effect is a result of the interaction of the electric charge, induced on a microparticle, with the magnetic field of the Earth. It is shown that the effect of microparticle capture by the Earth's magnetic field takes place in the case when the microparticles having a dimension of about 10–2 m and made of a material having high yield of photoemission are injected into the plasmasphere at altitudes of about several thousand kilometers and also in the case when the microparticles with a dimension of about 10–3 m and made of a material having low yield of photoemission are injected into the plasmasphere at altitudes of about 15000–20000 km and are moving close to the equatorial plane.  相似文献   

17.
Based on a new database on positions of the auroral oval boundaries including measurements made by the IMAGE satellite in 2000–2002 with correct determination of the glow boundaries, statistical estimations of the latitudinal position of the polar cap boundary (PCB) are obtained depending on the IMF B y and B z , and the PCB evolution during a magnetic storm is analyzed. At zero IMF in the noon (midnight) sector, PCB is located approximately at 80° (76°) CGMLat. The PCB displacement along the noon-midnight meridian is controlled by the IMF B z , and in the noon (midnight) sector it is equal to 0.45° (0.15°) CGMLat when B z changes by 1 nT. The PCB displacement along the dawn-dusk meridian depends on the IMF B y , and it equals 0.1° CGMLat when B y changes by 1 nT. Accordingly, the north polar cap as a whole is shifted to the dawn (dusk) side at B y > 0 (B y <0). After northward turn of the IMF during the storm’s recovery phase, the PCB on the dayside is shifted to the north practically without time delay. The night boundary requires 25 h or more in order to be shifted to the pole to a latitude corresponding to B z > 0.  相似文献   

18.
Based on the data of the BMSW instrument installed on the of SPEKTR-R spacecraft, as well as according to the data of instruments of the WIND spacecraft, etc., using two examples, the paper has studied the role of ions reflected from the front and associated structural features of quasi-perpendicular interplanetary shocks (IS) with the Alfvén Mach number М A lower than the first critical Mach number М c1 . It has been shown that BSs with the finite parameter 0.1 < β1 < 1 contain a small fraction of reflected protons, which play a significant role in forming the front structure (β1 is the ratio of gas-to-magnetic pressure before the shock front). In particular, in the case of a perpendicular shock recorded on August 24, 2013 (the angle between the magnetic field direction and the normal to the front θBn ≈ 85°), an IS with a small Mach number (МA ≈ 1.4) and small β1 ≈ 0.2 is shown that the interactions of reflected ions with inflowing solar wind may result in the collisionless heating of ions in front of and behind it. The case of the oblique (θBn = 63°) IS on April 19, 2014 with a small Mach number (М A ≈ 1.2) and small β1 ≈ 0.5 has been investigated. It has been found that, before the front, there is a sequence of trains of magnetosonic waves, the amplitude of which decreases to zero upon increasing their distance from the front. The mechanism of their formation is associated with the development of instability caused by the ions reflected from the front.  相似文献   

19.
Results of modeling the time behavior of the D st index at the main phase of 93 geomagnetic storms (?250 < D st ≤ ?50 nT) caused by different types of solar wind (SW) streams: magnetic clouds (MC, 10 storms), corotating interaction regions (CIR, 31 storms), the compression region before interplanetary coronal ejections (Sheath before ICME, 21 storms), and “pistons” (Ejecta, 31 storms) are presented. The “Catalog of Large-Scale Solar Wind Phenomena during 1976–2000” (ftp://ftp.iki.rssi.ru/pub/omni/) created on the basis of the OMNI database was the initial data for the analysis. The main phase of magnetic storms is approximated by a linear dependence on the main parameters of the solar wind: integral electric field sumEy, dynamic pressure P d , and fluctuation level sB in IMF. For all types of SW, the main phase of magnetic storms is better modeled by individual values of the approximation coefficients: the correlation coefficient is high and the standard deviation between the modeled and measured values of D st is low. The accuracy of the model in question is higher for storms from MC and is lower by a factor of ~2 for the storms from other types of SW. The version of the model with the approximation coefficients averaged over SW type describes worse variations of the measured D st index: the correlation coefficient is the lowest for the storms caused by MC and the highest for the Sheath- and CIR-induced storms. The model accuracy is the highest for the storms caused by Ejecta and, for the storms caused by Sheath, is a factor of ~1.42 lower. Addition of corrections for the prehistory of the development of the beginning of the main phase of the magnetic storm improves modeling parameters for all types of interplanetary sources of storms: the correlation coefficient varies within the range from r = 0.81 for the storms caused by Ejecta to r = 0.85 for the storms caused by Sheath. The highest accuracy is for the storms caused by MC. It is, by a factor of ~1.5, lower for the Sheath-induced storms.  相似文献   

20.
The mathematical model, which allowed us to reconstruct the rotational motion of the Bion M-1 and Foton M-4 satellites by processing the measurements of onboard magnetometers and the angular velocity sensor, is sufficiently detailed and accurate. If we slightly lower the requirements for accuracy and transfer to a rougher model, i.e., we will not update the biases in measurements of the angular velocity component, then the measurement processing technique can be significantly simplified. The volume of calculations in minimizing the functional of the least-square technique is reduced; the most complicated part of calculations is performed using the standard procedure of computational linear algebra. This simplified technique is described below, and the examples of its application for reconstructing the rotational motion of the Foton M-4 satellite are presented. A noticeable distinction in the reconstructions of motion, constructed by simplified and more exact techniques, is revealed in processing the measurements over time intervals longer than 4 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号