首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Voyager Plasma Wave System (PWS) will provide the first direct information on wave-particle interactions and their effects at the outer planets. The data will give answers to fundamental questions on the dynamics of the Jupiter and Saturn magnetospheres and the properties of the distant interplanetary medium. Basic planetary dynamical processes are known to be associated with wave-particle interactions (for instance, solar wind particle heating at the bow shock, diffusion effects that allow magnetosheath plasma to populate the magnetospheres, various energization phenomena that convert thermal plasma of solar wind origin into trapped radiation, and precipitation mechanisms that limit the trapped particle populations). At Jupiter, plasma wave measurements will also lead to understanding of the key processes known to be involved in the decameter bursts such as the cooperative mechanisms that yield the intense radiation, the observed millisecond fine-structure, and the Io modulation effect. Similar phenomena should be associated with other planetary satellites or with Saturn's rings. Local diagnostic information (such as plasma densities) will be obtained from wave observations, and the PWS may detect lightning whistler evidence of atmospheric electrical discharges. The Voyager Plasma Wave System shares the 10-meter PRA antenna elements, and the signals are processed with a 16-channel spectrum analyzer, covering the range 10 Hz to 56 kHz. At selected times during the planetary encounters, the PWS broadband channel will operate with the Voyager video telemetry link to give complete electric field waveforms over the frequency range 50 Hz to 10 kHz.  相似文献   

3.
The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10-19 and 10-9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the Sun, to Jupiter and to its satellites, to study its interaction with the Galilean satellites and the Jovian magnetosphere. Surface phenomena of the satellites (like albedo variations), which might be effects of meteoroid impacts will be compared with the dust environment. Electric charges of particulate matter in the magnetosphere and its consequences will be studied; e.g., the effects of the magnetic field on the trajectories of dust particles and fragmentation of particles due to electrostatic disruption. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 106 times higher than that of previous in-situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits s-1 in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.  相似文献   

4.
Amongst its complement of particles and fields instruments, the Galileo spacecraft carries an Energetic Particles Detector (EPD) designed to measure the characteristics of particle populations important in determining the size, shape, and dynamics of the Jovian magnetosphere. To do this the EPD provides 4 angular coverage and spectral measurements for Z 1 ions from 20 keV to 55 MeV, for electrons from 15 keV to > 11 MeV, and for the elemental species helium through iron from approximately 10 keV nucl-1 to 15 MeV nucl-1. Two bi-directional telescopes, mounted on a stepping platform, employ magnetic deflection, energy loss versus energy, and time-of-flight techniques to provide 64 rate channels and pulse height analysis of priority selected events. The EPD data system provides a large number of possible operational modes from which a small number will be selected to optimize data collection during the many encounter and cruise phases of the mission. The EPD employs a number of safeing algorithms that are to be used in the event that its self-checking procedures indicate a problem. The EPD has demonstrated its operational flexibility throughout the long evolution of the Galileo program by readily accommodating a variety of secondary mission objectives occasioned by the changing mission profile, such as the Venus flyby and the Earth 1 and 2 encounters. To date the EPD performance in flight has been nominal. In this paper we describe the instrument and its operation.  相似文献   

5.
6.
作为两颗"伽利略在轨验证元素"(GIOVE)试验卫星中的第一颗,Giove-A,于2005年12月28日当地时间上午11时19分在哈萨克斯坦拜科努尔航天中心发射升空,经过"弗雷盖特"(Fregat)上面级火箭的三次点火后,这颗由英国萨里卫星技术公司制造的试验卫星被送入了高23230千米、倾角56度的轨道.  相似文献   

7.
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10%, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. These measurements can be either transmitted to the ground in real time, or stored on the spacecraft tape recorder. On the ground the waveforms are Fourier transformed and displayed as frequency-time spectrogams. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.Deceased  相似文献   

8.
9.
10.
The THEMIS Mission   总被引:1,自引:0,他引:1  
The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-satellites (hereafter termed “probes”) which line up along the Earth’s magnetotail to track the motion of particles, plasma and waves from one point to another and for the first time resolve space–time ambiguities in key regions of the magnetosphere on a global scale. The probes are equipped with comprehensive in-situ particles and fields instruments that measure the thermal and super-thermal ions and electrons, and electromagnetic fields from DC to beyond the electron cyclotron frequency in the regions of interest. The primary goal of THEMIS, which drove the mission design, is to elucidate which magnetotail process is responsible for substorm onset at the region where substorm auroras map (~10 RE): (i) a local disruption of the plasma sheet current (current disruption) or (ii) the interaction of the current sheet with the rapid influx of plasma emanating from reconnection at ~25 RE. However, the probes also traverse the radiation belts and the dayside magnetosphere, allowing THEMIS to address additional baseline objectives, namely: how the radiation belts are energized on time scales of 2–4 hours during the recovery phase of storms, and how the pristine solar wind’s interaction with upstream beams, waves and the bow shock affects Sun–Earth coupling. THEMIS’s open data policy, platform-independent dataset, open-source analysis software, automated plotting and dissemination of data within hours of receipt, dedicated ground-based observatory network and strong links to ancillary space-based and ground-based programs. promote a grass-roots integration of relevant NASA, NSF and international assets in the context of an international Heliophysics Observatory over the next decade. The mission has demonstrated spacecraft and mission design strategies ideal for Constellation-class missions and its science is complementary to Cluster and MMS. THEMIS, the first NASA micro-satellite constellation, is a technological pathfinder for future Sun-Earth Connections missions and a stepping stone towards understanding Space Weather.  相似文献   

11.
The Juno Mission   总被引:1,自引:0,他引:1  
The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (\({\leq}{-}2.5\ \mbox{km}\) for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ~600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ~5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection.  相似文献   

12.
Barraclough  B.L.  Dors  E.E.  Abeyta  R.A.  Alexander  J.F.  Ameduri  F.P.  Baldonado  J.R.  Bame  S.J.  Casey  P.J.  Dirks  G.  Everett  D.T.  Gosling  J.T.  Grace  K.M.  Guerrero  D.R.  Kolar  J.D.  Kroesche  J.L.  Lockhart  W.L.  McComas  D.J.  Mietz  D.E.  Roese  J.  Sanders  J.  Steinberg  J.T.  Tokar  R.L.  Urdiales  C.  Wiens  R.C. 《Space Science Reviews》2003,105(3-4):627-660
The Genesis Ion Monitor (GIM) and the Genesis Electron Monitor (GEM) provide 3-dimensional plasma measurements of the solar wind for the Genesis mission. These measurements are used onboard to determine the type of plasma that is flowing past the spacecraft and to configure the solar wind sample collection subsystems in real-time. Both GIM and GEM employ spherical-section electrostatic analyzers followed by channel electron multiplier (CEM) arrays for detection and angle and energy/charge analysis of incident ions and electrons. GIM is of a new design specific to Genesis mission requirements whereas the GEM sensor is an almost exact copy of the plasma electron sensors currently flying on the ACE and Ulysses spacecraft, albeit with new electronics and programming. Ions are detected at forty log-spaced energy levels between ∼ 1 eV and 14 keV by eight CEM detectors, while electrons with energies between ∼ 1 eV and 1.4 keV are measured at twenty log-spaced energy levels using seven CEMs. The spin of the spacecraft is used to sweep the fan-shaped fields-of-view of both instruments across all areas of the sky of interest, with ion measurements being taken forty times per spin and samples of the electron population being taken twenty four times per spin. Complete ion and electron energy spectra are measured every ∼ 2.5 min (four spins of the spacecraft) with adequate energy and angular resolution to determine fully 3-dimensional ion and electron distribution functions. The GIM and GEM plasma measurements are principally used to enable the operational solar wind sample collection goals of the Genesis mission but they also provide a potentially very useful data set for studies of solar wind phenomena, especially if combined with other solar wind data sets from ACE, WIND, SOHO and Ulysses for multi-spacecraft investigations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.  相似文献   

14.
The LISA Pathfinder Mission   总被引:1,自引:0,他引:1  
LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.  相似文献   

15.
THEMIS, NASA’s fifth Medium Class Explorer (MIDEX) mission will monitor the onset and macro-scale evolution of magnetospheric substorms. It is a fleet of 5 small satellites (probes) measuring in situ the magnetospheric particles and fields while a network of 20 ground based observatories (GBOs) monitor auroral brightening over Northern America. Three inner probes (~1 day period, 10 RE apogee) monitor current disruption and two outer probes (~2 day and ~4 day period, 20 RE and 30 RE apogees respectively) monitor lobe flux dissipation. In order to time and localize substorm onsets, THEMIS utilizes Sun–Earth aligned conjunctions between the probes when the ground-based observatories are on the nightside. To maintain high recurrence of conjunctions the outer orbits have to be actively adjusted during each observation season. Orbit maintenance is required to rearrange the inner probes for dayside observations and also inject the probes into their science orbits after near-simultaneous release from a common launch vehicle. We present an overview of the orbit strategy, which is primarily driven by the scientific goals of the mission but also represents a compromise between the probe thermal constraints and fuel capabilities. We outline the process of orbit design, describe the mission profile and explain how mission requirements are targeted and evaluated. Mission-specific tools, based on high-fidelity orbit prediction and common magnetospheric models, are also presented. The planning results have been verified by in-flight data from launch through the end of the first primary science seasons and have been used for mission adjustments subject to the early scientific results from the coast phase and first tail season.  相似文献   

16.
Galileo系统完好性处理的方法研究   总被引:1,自引:0,他引:1  
对于卫星导航系统而言,系统所能提供的完好性指标和导航定位精度是同样重要的。欧洲的Galileo系统将在2008年建成,届时它将与美国的GPS系统相互补充。本文在对GMileo系统导航定位指标分析的基础上,结合系统完好性监测的设计特点,推导了系统地面完好性信道(GIC)监测算法和用户自主完好性(RAIM)监测算法,建立了数据完好性播发体制。  相似文献   

17.
Observations from the ground and four fly-by spacecraft have provided initial reconnaissance of Jupiter's atmosphere. The Pioneer and Voyager data have raised new questions and underlined old ones about the basic state of the atmosphere and the processes determining the atmosphere's behavior. This paper discusses the main atmospheric science objectives which will be addressed by the Galileo (Orbiter and Probe) mission, organizing the discussion according to the required measurements of chemical composition, thermal structure, clouds, radiation budget, dynamics, upper atmosphere, and satellite atmospheres. Progress on the key questions will contribute not only to our knowledge of Jupiter's atmosphere but to a general understanding of atmospheric processes which will be valuable for helping us to understand the atmosphere and climate of the Earth.Realization of the atmospheric science objectives of the Galileo mission depends upon: (a) coordinated measurements from the entry probe and the orbiter; (b) global observations; and (c) observations over the range of time-scales needed to characterize the basic dynamical processes.The Atmospheres Working Group also includes: M. D. Allison, M. J. S. Belton, R. W. Boese, R. W. Carlson, C. R. Chapman, T. Encrenaz, V. R. Eshleman, P. J. Gierasch, C. W. Hord, H. T. Howard, L. J. Lanzerotti, H. B. Niemann, G. S. Orton, T. Owen, C. B. Pilcher, J. B. Pollack, B. Ragent, W. B. Rossow, A. Seiff, A. I. Stewart, P. H. Stone, F. W. Taylor, G. L. Tyler, U. von Zahn, and R. A. West.  相似文献   

18.
19.
An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA’s Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (~3000 fA/cm2) and provide sufficient sensitivity (~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.  相似文献   

20.
We investigate links between the observational environment as experienced by the Hipparcos satellite and the performance of the spacecraft and payload instrumentation, with particular emphasis on finding out whether some of these effects may have been inadequately represented in instrument calibrations and could thus have affected the scientific results of the mission. Scan-coverage and radiation effects are primarily random effects with only some long-term systematics. However, long- (days to weeks) and short-term (hours) temperature variations reflected in the performance of some of the spacecraft instrumentation. It is shown that only a small sign of some long-term thermal variations could be detected in the payload instrumentation. These findings further limit the scope left for the occurrence of large-scale correlated errors in the Hipparcos astrometric data. On the other hand, a number of great circles were identified which showed a highly significant drift of the basic angle, which had not been detected in the preparation of the published data. The data from these circles may have, in some cases, led to, very localised, slightly anomalous results, in particular where stars are accidentally affected by two or more of such circles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号