首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the recent ground level enhancement of 13 December 2006, also known as GLE70, solar cosmic ray particles of energy bigger that ∼500 MeV/nucleon propagated inside the Earth’s magnetosphere and finally accessed low-altitude satellites and ground level neutron monitors. The magnitude and the characteristics of this event registered at different neutron monitor stations of the worldwide network can be interpreted adequately on the basis of an estimation of the solar particle trajectories in the near Earth interplanetary space. In this work, an extended representation of the Earth’s magnetic field was realized applying the Tsyganenko 1989 model. Using a numerical back-tracing technique the solar proton trajectories inside the magnetospheric field of the Earth were calculated for a variety of particles, initializing their travel at different locations, covering a wide range of energies. In this way, the asymptotic directions of viewing were calculated for a significant number of neutron monitor stations, providing crucial information on the Earth’s “magnetospheric optics” for primary solar cosmic rays, on the top of the atmosphere, during the big solar event of December 2006. The neutron monitor network has been treated, therefore, as a multidimensional tool that gives insights into the arrival directions of solar cosmic ray particles as well as their spatial and energy distributions during extreme solar events.  相似文献   

2.
During the extreme burst of solar activity in October–November 2003, a series of outstanding events distinguished by their magnitude and peculiarities were recorded by the ground based neutron monitor network. The biggest and most productive in 23rd solar cycle active region 486 generated the most significant series of solar flares among of which the flare X28/3B on November 4, 2003 was the mostly powerful over the history of X-ray solar observations. The fastest arrival of the interplanetary disturbance from the Sun after the flare event in August 1972 and the highest solar wind velocity and IMF intensity were observed during these events. In one-week period three ground level enhancements (GLEs) of solar cosmic rays were recorded by neutron monitor network (28, 29 October and 2 November 2003). Maximum proton energy in these events seems to be ranged from 5 to 10 GeV. Joint analysis of data from ground level stations (neutron monitors) and satellite measurements allows the estimation of the particle path length, the onset time of the injection on the Sun and some other proton flux characteristics.  相似文献   

3.
One of the greatest and most famous increase of solar cosmic rays over the neutron monitor epoch is the ground level enhancement in 1956. All future proton events are inevitable when compared with this one and therefore it is necessary to provide the efficiency of such a comparison derived from the existing data. In this paper, we return to the analysis of ground level observations on 23 February 1956 in order to model more precisely the solar cosmic ray behaviour. The extremely high magnitude of this effect allowed various spectral characteristics of solar cosmic rays, their anisotropy, differential and integral proton fluxes, and angular distribution of the source of solar particle anisotropy to be obtained with sufficient accuracy on the basis of available data from 13 neutron monitors. The most outstanding feature of this event was a narrow and extremely intensive beam of ultra relativistic particles arriving at Earth at the beginning of the event. This unique beam was not long and its width did not exceed 30–40°, thus, its contribution to solar particle density was not significant. Many features of this GLE are apparently explained by the peculiarity of particle interplanetary propagation from a remote (limb or behind of limb) source.  相似文献   

4.
A statistical study has been made of cosmic ray intensity, as observed by a neutron monitor, and of selected solar and geophysical parameters in a search for phenomena which may be associated with the reversal of the solar magnetic field. The results reported here utilized the Zurich sunspot number and the geomagnetic aa index. There is an intriguing, but not conclusive, result that shows a vast difference in the correlation of the neutron monitor intensity and the aa index between successive periods bounded by solar maxima. Between the 19th solar cycle maximum (March 1958) and the 20th solar cycle maximum (November 1968), and the 20th solar cycle maximum (November 1968) and the 21st solar cycle maximum (assumed to be December 1979 for this study) the correlations are ?0.86 and +0.28 respectively.  相似文献   

5.
As the human exploration of space has received new attention in the United States, studies find that exposure to space radiation could adversely impact the mission design. Galactic Cosmic Radiation (GCR), with its very wide range of charges and energies, is particularly important for a mission to Mars, because it imposes a stiff mass penalty for spacecraft shielding. Dose equivalent versus shielding thickness calculations, show a rapid initial drop in exposure with thickness, but an asymptotic behavior at a higher shielding thickness. Uncertainties in the radiobiology are largely unknown. For a fixed radiation risk, this leads to large uncertain ties in shielding thickness for small uncertainties in estimated dose. In this paper we investigate the application of steady-state, spherically-symmetric diffusion-convection theory of solar modulation to individual measurements of differential energy spectra from 1954 to 1989 in order to estimate the diffusion coefficient, kappa (r,t), as a function of time. We have correlated the diffusion coefficient to the Climax neutron monitor rates and show that, if the diffusion coefficient can be separated into independent functions of space and time: kappa (-r,t)=K(t)kappa 0 beta P kappa 1(r), where beta is the particle velocity and P the rigidity, then (i) The time dependent quantity 1/K(t), which is proportional to the deceleration potential, phi(r,t), is linearly related to the Climax neutron monitor counting rate. (ii) The coefficients obtained from hydrogen or helium intensity measurements are the same. (iii) There are different correlation functions for odd and even solar cycles. (iv) The correlation function for the Climax neutron monitor counting rate for given time, t, can be used to estimate mean deceleration parameter phi(t) to within +/- 15% with 90% confidence. We have shown that kappa(r,t) determined from hydrogen and/or helium data, can be used to fit the oxygen and iron differential energy spectra with a root mean square error of about +/- 10%, and essentially independent of the particle charge or energy. We have also examined the ion chamber and 14C measurements which allow the analysis to be extended from the year 1906 to 1990. Using this model we have defined reference GCR spectra at solar minimum and solar maximum. These can be used for space exploration studies and provide a quantitative estimate of the error in dose due to changes in GCR intensities.  相似文献   

6.
On four occasions, twice in 1991 (near solar maximum) and twice in 1994 (near solar minimum), one COMPTEL D1 detector module was used as an omnidirectional detector to measure the high-energy (>12.8 MeV) neutron flux near an altitude of 450 km. The Dl modules are cylindrical, with radius 13.8 cm and depth 8 cm, and are filled with liquid scintillator (NE213A). The combined flux measurements can be fit reasonably well by a product of the Mt. Washington neutron monitor rate, a linear function in the spacecraft geocenter zenith angle, and an exponential function of the vertical geomagnetic cutoff rigidity in which the coefficient of the rigidity is a linear function of the neutron monitor rate. When pointed at the nadir, the flux is consistent with that expected from the atmospheric neutron albedo alone. When pointed at the zenith the flux is reduced by a factor of about 0.54. Thus the production of secondary neutrons in the massive (16000 kg) Compton Gamma-Ray Observatory spacecraft is negligible. Rather, the mass of the spacecraft provides shielding from the earth albedo.  相似文献   

7.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

8.
Within the last years, a real-time system to monitor high energy cosmic rays for space weather use has been operated at Athens cosmic ray station. Neutron monitors and satellite high resolution data in real time are used, making it possible to observe cosmic rays in dual energy range observations. In large solar energetic particle (SEP) events, ground level enhancement (GLE) can provide the earliest alert for the onset of the SEP event. This system watches for count rate increases recorded in real time by 23 neutron monitors, which triggers an alarm if a ground level enhancement (GLE) of cosmic ray intensity is detected.  相似文献   

9.
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.  相似文献   

10.
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.  相似文献   

11.
Close to the current solar activity minimum, two large solar cosmic ray ground-level enhancements (GLE) were recorded by the worldwide network of neutron monitors (NM). The enormous GLE on 20 January 2005 is the largest increase observed since the famous GLE in 1956, and the solar cosmic-ray event recorded on 13 December 2006 is among the largest in solar cycle 23. From the recordings of the NMs during the two GLEs, we determined the characteristics of the solar particle flux near Earth.  相似文献   

12.
In this study we applied again to the outstanding solar particle event of 23 February 1956, the largest one in the entire history of observations of solar cosmic rays. Due to significant improvement of the analysis/modeling techniques and new understanding of physical processes in the solar atmosphere and interplanetary space, a possibility arises to interpret the old data in the light of modern concept of multiple particle acceleration at/near the Sun. In our new analysis the data of available then neutron monitors and muon telescopes are used. The technique of the analysis includes: (a) calculation of asymptotic cones of ground-based detectors; (b) modeling of cosmic ray detector responses at variable parameters of the flux of solar relativistic protons; (c) determination of primary solar proton parameters outside magnetosphere by comparison of computed responses with observations. Certain evidence was obtained that the flux of relativistic solar protons consisted of two distinct components: prompt and delayed ones. The prompt component with exponential energy spectrum caused a giant impulse-like increase at a number of European cosmic ray stations. The delayed component had a power-law spectrum and was a cause of gradual increase at cosmic ray stations in the North American region. A numerical simulation of the proton acceleration in the vicinity of the magnetic reconnection region brings to the proton spectrum with exponential dependence on energy. This agrees with observational data for the prompt component. It is also shown that the huge increase in ∼5000% on neutron monitors was due to the prompt component only with the exponential proton spectrum. The power-law spectrum of comparable intensity gave considerably smaller effect.  相似文献   

13.
In order to understand the physics under extreme solar conditions such as those producing ground level enhancements of solar cosmic rays, it is important to use accurate and reliable models. The NM-BANGLE Model is a new cosmic ray model which couples primary solar cosmic rays at the top of the Earth’s atmosphere with the secondary ones detected at ground level by neutron monitors during GLEs. This model calculates the evolution of several GLE parameters such as the solar cosmic ray spectrum, anisotropy and particle flux distribution, revealing crucial information on the energetic particle propagation and distribution. The total output of the NM-BANGLE Model is a multi-dimensional GLE picture that gives an important contribution to revealing the characteristics of solar energetic particle events recorded at ground level. In this work, the results of the NM-BANGLE Model application to the recent GLE of 13 December 2006 are presented and discussed. Moreover, a comparison with the extreme event of 20 January 2005 (GLE69) has been realized.  相似文献   

14.
Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10–20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.  相似文献   

15.
By the data on intensity-time profiles of the neutron capture line of 2.223 MeV we have studied some characteristics of two solar flares, 28 October 2003 and 20 January 2005 (INTEGRAL and CORONAS-F observations, respectively). The SINP code was applied making allowance for the main processes of neutron interactions and deceleration in the solar plasma, character of neutron source, losses of neutrons and density model of the solar atmosphere. Comparison of the computed time profiles of 2.223 MeV line with observed ones for the flare of 28 October 2003 confirms the results obtained earlier for three other flares. Namely, the effect of density enhancement (EDE) in the sub-flare region, as well as the variations (hardening) of accelerated particle spectrum in the course of the event have been confirmed. The usual modeling procedure by the SINP code, however, seems to be inapplicable to the event of 20 January 2005. Possible causes of density enhancements during some flares and peculiarities of the 20 January 2005 flare are discussed.  相似文献   

16.
North–South asymmetry in the cosmic ray fluxes as resulted from the long-term balloon measurements in the northern and southern polar stratosphere does not agree with that found from the neutron monitor data. In order to reveal possible sources of the observed asymmetry, selected interplanetary parameters were examined. North–South asymmetry relative to the heliospheric neutral sheet was considered for solar wind velocity, plasma density and some other solar plasma parameters. It is shown that North–South asymmetry of the solar wind velocity and plasma density depends on the Earth’s heliolatitude and the phase of the 11-year solar activity cycle. This may be relevant to the results of cosmic ray measurements in the stratosphere.  相似文献   

17.
Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as γ-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle accleration in shock waves.  相似文献   

18.
We performed a search for ground level solar cosmic ray enhancements on the full five minute database of the Mexico City neutron monitor using wavelet filters and two different statistical tests. We present a detailed analysis of the time series of November 2, 1992, where we found a previously unreported increment matching the onset time of the impulsive phase of GLE 54, thus providing evidence of an effective detection of high energy solar cosmic rays.  相似文献   

19.
羊八井宇宙线强度观测数据的气压修正   总被引:2,自引:0,他引:2  
分析了羊八井宇宙线强度的气压修正,分析表明,气压修正不仅与气压有关,而且与太阳活动有关.太阳活动最高的年,气压修正系数的绝对值最大.此外,计数率的修正值还与数据采样的时间间隔有关,即使是同一时间段,不同时间间隔采用率得到的修正值是不同的.本文最后分析了西藏羊八井中子监测器观测数据的气压修正,得到单路及八道多重计数的气压修正系数.  相似文献   

20.
The Sun provides unique opportunities to study particle acceleration mechanisms using data from detectors placed on the Earth’s surface and on board spacecrafts. Particles may gain high energies by several physical mechanisms. Differentiating between these possibilities is a fundamental problem of cosmic ray physics. Energetic neutrons provide us with information that keeps the signatures of the acceleration site. A summary of some representative solar neutron events observed on the Earth’s surface, including associated X and γ-ray observations from spacecrafts is presented. We discuss evidence of acceleration of particles by the Sun to energies up to several tens of GeV. In addition, a recent solar neutron event that occurred on September 7th 2005 and detected by several observatories at Earth is analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号