首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two types of convection were observed in the laboratory model of the magnetosphere: viscous convection and convection due to field lines common to both the magnetosphere and artificial solar wind. With a southward field component in the solar wind, convection from the Sun is observed in the polar cap, while with a large northward component, convection is directed toward the Sun. Merging of the field lines occurs in the cleft. With the southward component, a visor appears in front of the magnetosphere boundary. The decay of the visor into small magnetic structure is observed. The formation of an induced magnetosphere with a magnetic tail is shown in the experiments of the simulated conditions near non-magnetic bodies with a plasma shell (Venus, comets). A combined induced-intrinsic magnetosphere also was investigated.  相似文献   

2.
本文通过STARE观测的晨不连续性及其与TRIAD观测的场向电流分界区、AE-C卫星观测的电场转向区位置的比较,提出了在高扰日向阳面对流电场转向区位置存在着晨不对称性——晨半面所处纬度低于昏半面.该现象间接说明向阳面磁层边界层也存在某种不对称性.并在观测基础上对可造成该不对称性的物理因子进行了探讨,认为行星际磁场螺线结构对重连区位置的影响及其产生的激波结构的晨昏不对称性很可能与本文中讨论的现象有一定联系.   相似文献   

3.
Data from the particle experiment aboard the AUREOL-3 polar satellite show that about 30% of the summer cusp crossings are characterised by a clear latitudinal energy dispersion of the solar wind ions. This energy-latitude correlation is observed at very high latitudes, 80° – 85°, near the polar boundary of the cusp, as an increase of the ion average energy with latitude. These structures have a typical latitude extent of 1° – 2° at ionospheric heights and correspond to a northward-directed IMF. These observations are consistent with a sunward convection of the foot of the magnetic flux tubes recently merged with a northward directed interplanetary magnetic field.  相似文献   

4.
地球磁尾的电场模式   总被引:1,自引:0,他引:1  
地球磁层中的电场是磁层等离子体运动的主要驱动力。目前常用的磁层电场为均匀晨昏电场和投影电场。本文假定磁力线为电场的等位线,地球电离层电场看做磁层电场沿磁力线在电离层的投影。利用Tsyganenko磁场模式(T89),沿磁力线反电离层电场投影到磁尾,得到了一个新的磁层电场模式。文中对偶极磁场和T89磁场模式下的投影场作了比较,说明本模式突破了偶极磁场的局限,在磁层有更大的适用范围。  相似文献   

5.
We present an observational study of magnetospheric and ionospheric disturbances during the December 2006 intense magnetic storm associated with the 4В/Х3.4 class solar flare. To perform the study we utilize the ground data from North–East Asian ionospheric and magnetic observatories (60–72°N, 88–152°E) and in situ measurements from LANL, GOES, Geotail and ACE satellites. The comparative analysis of ionospheric, magnetospheric and heliospheric disturbances shows that the interaction of the magnetosphere with heavily compressed solar wind and interplanetary magnetic field caused the initial phase of the magnetic storm. It was accompanied by the intense sporadic E and F2 layers and the total black-out in the nocturnal subauroral ionosphere. During the storm main phase, LANL-97A, LANL 1994_084, LANL 1989-046 and GOES_11 satellites registered a compression of the dayside magnetosphere up to their orbits. In the morning–noon sector the compression was accompanied by an absence of reflections from ionosphere over subauroral ionospheric station Zhigansk (66.8°N, 123.3°E), and a drastic decrease in the F2 layer critical frequency (foF2) up to 54% of the quite one over subauroral Yakutsk station (62°N, 129.7°E). At the end of the main phase, these stations registered a sharp foF2 increase in the afternoon sector. At Yakutsk the peak foF2 was 1.9 time higher than the undisturbed one. The mentioned ionospheric disturbances occurred simultaneously with changes in the temperature, density and temperature anisotropy of particles at geosynchronous orbit, registered by the LANL-97A satellite nearby the meridian of ionospheric and magnetic measurements. The whole complex of disturbances may be caused by radial displacement of the main magnetospheric domains (magnetopause, cusp/cleft, plasma sheet) with respect to the observation points, caused by changes in the solar wind dynamic pressure, the field of magnetospheric convection, and rotation of the Earth.  相似文献   

6.
The geometry of a typical interplanetary shock front in the vicinity of the Earth’s orbit predicts that the leading edge of the foreshock region comes into contact with the magnetosphere a few hours ahead of geomagnetic sudden impulses (SI). There is reason to believe that the interaction of the magnetosphere with the foreshock leads to magnetic and ionospheric disturbances, which can be detected by ground-based instruments. We searched for specific precursors of SIs in data from the Scandinavian riometer network and in the short period geomagnetic pulsation data from mid-latitude magnetometers. We found that SIs were preceded by the following three features: (1) an increase in riometric absorption, (2) excitation of Pcl magnetic pulsations and (3) a spectral broadening of the Pc3 magnetic pulsations. Our observations may be useful for the study of acceleration processes in the solar wind. These observations are also of potential forecasting interest.  相似文献   

7.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

8.
The aim of this paper is to investigate processes in the magnetosphere and in particular the problems of the interaction of the solar wind with the Earth's magnetic field to produce large-scale convection, electric fields and longitudinal currents in the magnetosphere. The investigation is carried out in the frame of magnetic hydrodynamics. The reason for such an approach can be found in /1/. When calculating the transfer coefficients, the Böhm approximation is used, i.e. it is considered that the plasma in the near-equatorial part of the magnetosphere (quasiplanar geometry is used in the problem for simplification) is sufficiently turbulent that the condition ωτ ≈ 1 is valid (ω is the Larmor frequency of electrons, τ is effective time between two Quasi-collisions). The main subjects of investigation in this paper are the input near the equatorial boundary layer and the plasma layer of the magnetosphere tail.  相似文献   

9.
利用超级双子极光雷达网(Super Dual Aurora Radar Network,SuperDARN)高频雷达、北半球IMAGE地磁台链以及南极中山站的极光观测数据,研究电离层对流对2012年7月14日一个行星际激波扰动事件的响应.在18:10UT行星际激波到达地球并与磁层相互作用触发地磁急始和磁层亚暴,SuperDARN雷达观测到北半球夜侧极区电离层对流显著增强,观测视野覆盖黄河站的Hankasalmi雷达观测到从激波到达地球至18:33UT,电离层F层出现剧烈扰动,雷达回波数明显增多,并出现局部对流速度反转现象.18:33UT之后,观测到F层出现三块速度高达600m·s-1的逆阳运动不规则体.而与Hankasalmi雷达地磁共轭的南半球Kerguelen雷达探测到的回波主要来自E层,回波数量几乎无变化,但是Kerguelen雷达观测视野内的中山站全天空光学成像仪观测到极光活动显著增强.南北半球夜侧电离层观测结果的差异,主要是由于它们分别处于极夜和极昼.   相似文献   

10.
行星际激波对地球磁层的压缩效应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2004 年11月9日WIND飞船探测到一个典型的行星际激波. 激波前行星际磁场为持续约50 min的弱南向磁场, 越过激波面, 磁场发生北向偏转且太阳风动压脉冲增强. 在此强动压脉冲增强结构作用下, 磁层被压缩至一个很小的区域. 激波作用于磁层时引起地球同步轨道 各区域高能粒子通量的响应, 但是不同磁地方时的高能粒子通量的响应不同, 表现出双模式扰动, 即在晨昏两侧各能段的电子和质子通量显著增强, 在子夜侧发生类似于亚暴的无色散粒子注入现象. 扰动从向阳面传输到背阳面, 向阳面粒子通量最先增强, 随后背阳面靠近晨昏两侧, 粒子通量开始增强, 最后子夜侧粒子通量表现出无色散高能粒子注入的特点. 另外, 在靠近正午侧, 质子通量先于电子通量发生响应, 在子夜侧电子通量则先于质子通量发生响应. 利用位于向阳面正午两侧的GOES-10 和 GOES-12卫星观测数据发现, 激波作用于磁层时靠近晨侧的磁场变化表现出简单压缩效应, 而靠近昏侧的磁场变化则显然不同, Bx分量减弱, Bz分量几乎减为零, 而By分量则显著增强. 此外, 位于近地磁尾低纬尾瓣区的TC-1卫星观测到激波触发的尾瓣SI现象.   相似文献   

11.
The northward and southward orientation of the interplanetary magnetic field (IMF) is usually considered as providing the external boundary conditions in the solar wind interaction with the Earth's magnetopause but it is the magnetic field in the magnetosheath that interacts with the Earth's magnetic field. In this paper, we consider the possibility that the wave activity in the foreshock region may affect the magnetic field orientation in the magnetosheath with time scales that might be geomagnetically effective. If magnetosheath magnetic field becomes disturbed on plasma streamlines which are connected to the quasi-parallel bow shock and foreshock, the magnetic field orientation on the inner magnetosheath may differ significantly from the undisturbed IMF. We present a model of dayside reconnection which may occur when the IMF northward and illustrate its effects on the erosion of the magnetopause.  相似文献   

12.
Hot plasma observations from Dynamics Explorer 1 have been used to investigate solar-wind ion injection, Birkeland currents, and plasma convection at altitudes above 2 RE in the morning sector. The results of the study, along with the antiparallel merging hypothesis, have been used to construct a BY-dependent global convection model. A significant element of the model is the coexistence of three types of convection cells (“merging cells,” “viscous cells,” and “lobe cells”). As the IMF direction varies, the model accounts for the changing roles of viscous and merging processes and makes testable predictions about several magnetospheric phenomena, including the newly-observed theta aurora in the polar cap.  相似文献   

13.
本文利用一些简单模式讨论对流转向区形态、电离层电导率的分布变化对场向电流形态的影响。结果表明,一区场向电流是最基本的,与对流转向区直接相联。二区场向电流的产生不仅与对流电场的屏蔽相联,也与电导率变化有关。电导率的变化还可产生一区电流高纬侧的零区电流和二区电流低纬侧的反向电流。此外,剪切转向区和旋转转向区所对应的场向电流分布也有所不同。本文结果有助于理解观测的场向电流之复杂形态,也可以解释同样的行星际磁场状况下,场向电流的不同变化。   相似文献   

14.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

15.
行星际起伏向磁层顶的输运   总被引:1,自引:1,他引:0  
时间尺度为分钟数量级的太阳风速度和行星际磁场大幅度扰动实际上始终存在于行星际空间的。这些扰动一直传输到紧贴磁层边界面外侧的区域。它们在磁鞘等离子体和磁层顶的相互作用过程中可能起很重要的作用。行星际起伏中的磁场分量在通过地球弓激波时首先经历一次跳跃,然后一部分扰动被带到磁层边界面处。在边界面附近磁场扰动幅度被大大地放大了。弓激波上游的太阳风条件控制了放大因子。本文所作的数值模拟研究结果表明,如果上游有大幅度的扰动,在边界面附近就有大幅度的Alfven起伏的磁场分量。当上游磁场接近垂直于日地联线时,放大因子变得相当大,而且放大因子随上游的等离子体β值和/或Alfven马赫数的增加而增加。上游各向异性对放大因子的影响不大。在磁层边界附近存在大幅度起伏表明这里不存在稳定的片流。   相似文献   

16.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   

17.
There is evidence of a strong influence of an atmospheric (cometary) interaction on the Martian tail formation: small total magnetic flux in the tail, the existence of plasma flow of apparently planetary origin, interplanetary magnetic field control of magnetic field orientation in the tail and other evidence. At the same time the large radius of the Martian magnetotail (about 2 planetary radii) can be considered as a strong evidence for the existence of a planetary magnetic field. Plasma and magnetic field properties in the Martian tail are in many respects similar to the ones observed in the tail of Venus. The limited amount of near-Mars measurements leads to some reservations in coming to definite conclusions. A combined magnetosphere of Mars is suggested that consists of two polar-tied magnetic tubes connected to the tail and an equatorial Venus-type interaction region in-between.  相似文献   

18.
In the decade and a half since the initial discovery that the Earth's own ionosphere could at times contribute measurably to the hot plasma in the magnetosphere we have made significant progress in both our knowledge and understanding of this connection. We now know that ions of ionospheric origin are found in all major regions of the magnetosphere and at its boundaries. The source region in the ionosphere and the acceleration and transport processes involved in coupling the cold ionospheric plasma to the hot magnetospheric plasma are complex and variable. We now have a good understanding of the large scale morphology of the ionospheric outflow and its distribution throughout the magnetosphere and progress is being made in the understanding of the fundamental physical processes involved. In this paper we concentrate on the large scale morphology and our understanding of the sources for ionospheric ions found in various regions of the magnetosphere and their transport.  相似文献   

19.
IMF effect on ionospheric trough occurrence at equinoxes   总被引:1,自引:0,他引:1  
Previous observations have shown that there is a relationship between the F region trough and both Bz and By components of the interplanetary magnetic field (IMF). Since IMF governs the polar cap convection, we investigate here if this relationship can be explained by means of polar cap convection. The study is limited to equinox seasons. The poleward and equatorward edges of the trough are determined from satellite tomographic observations and their locations are plotted in magnetic coordinates together with the convection pattern given by Papitashvili and Rich [Papitashvili, V.O., Rich, F.J. High-latitude ionospheric convection models derived from DMSP ion drift observations and parameterized by the IMF strength and direction. J. Geophys. Res. 107, 2002, doi:10.1029/2001JA000264] using IMF measurements coincident with trough observations. The results indicate a close relationship between the troughs and convection. Most of the troughs are seen within the dusk cell and the pattern of trough observations rotates with the convection pattern, when By changes its sign. More dayside troughs are observed when Bz is negative than in the opposite case, i.e. fast convective flow favours the dayside trough occurrence. Nightside troughs are observed more frequently when By is negative. In both evening and morning sectors the trough is situated close to the edges of convection cells, which partly contradicts previous results showing that the troughs are associated with the convection reversal. It is concluded that plasma convection has an important role in trough generation, although the effect of a strong electric field and other mechanisms like precipitation certainly have a role of their own.  相似文献   

20.
This paper is devoted to the study of propagation of disturbances caused by interplanetary shocks (IPS) through the Earth’s magnetosphere. Using simultaneous observations of various fast forward shocks by different satellites in the solar wind, magnetosheath and magnetosphere from 1995 till 2002, we traced the interplanetary shocks into the Earth’s magnetosphere, we calculated the velocity of their propagation into the Earth’s magnetosphere and analyzed fronts of the disturbances. From the onset of disturbances at different satellites in the magnetosphere we obtained speed values ranging from 500 to 1300 km/s in the direction along the IP shock normal, that is in a general agreement with results of previous numerical MHD simulations. The paper discusses in detail a sequence of two events on November 9th, 2002. For the two cases we estimated the propagation speed of the IP shock caused disturbance between the dayside and nightside magnetosphere to be 590 km/s and 714–741 km/s, respectively. We partially attributed this increase to higher Alfven speed in the outer magnetosphere due to the compression of the magnetosphere as a consequence of the first event, and partially to the faster and stronger driving interplanetary shock. High-time resolution GOES magnetic field data revealed a complex structure of the compressional wave fronts at the dayside geosynchronous orbit during these events, with initial very steep parts (10 s). We discuss a few possible mechanisms of such steep front formation in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号