首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Fourier spectrometers for the investigation of infrared spectra of Venus were installed on the recent Soviet orbiters “Venera-15” and “Venera-16”. Many spectra with reliable absolute calibration were obtained in the 280–1500 cm?1 region with a spectral resolution of 5 cm?1 (ground based processing) and about 7 cm?1 (preoprocessed on board) and a spatial resolution of about 100 km at the Venusian cloud top level. Bands of CO2, H2O, H2SO4 and SO2 are identified. The 15 μm-CO2- fundamental band was used for retrieval of altitude dependent temperature profiles. There are significant differences in the cloud structure above 60 km for distinct regions of Venus, demonstrated by differences in the spectra.  相似文献   

2.
Spin-scan images from the Pioneer Venus Orbiter UV Spectrometer and the Cloud Photopolarimeter provide a set of planetary contrast measurements in the wavelength range 1990A to 3650A and phase angles from 33°–130°. The planet is darkest at the point where the UVS line of sight penetrates perpendicular to the cloud tops: thus the absorbing material responsible must be deep in the atmosphere. Sulfur dioxide absorption can explain the amount of contrast seen between 2000A and 3200A. At the longer wavelengths, the persistence of contrast requires another absorber which is deeper in the atmosphere and strongly associated with the location of the SO2. Part of the observed contrast is due to the high-lying haze discovered from Pioneer Venus polarimetry. The correlation between planetary contrast and polarization does not support large scale clearing or major vertical motions of the cloud tops as the sole cause of the observed contrast. However, a scheme in which absorbers subject to photochemical destruction are mixed upward into the cloud top region provides a consistent explanation for the origin of these markings.  相似文献   

3.
It is shown that decline of spherical albedo of Venus toward the ultraviolet can be explained by the presence of two absorbing agents: a) SO2, for which abundance is 1011 cm?3 at height 68 km and scale height is about 1 km; b) some unknown aerosol absorbent, possibly a 1% FeCl3 admixture in a sulfuric acid concentrated solution. A mechanism of aerosol formation is proposed.  相似文献   

4.
Our current knowledge on the composition of the Venus atmosphere in the altitude range from the surface to 100 km is compiled. Gases that have been measured, and whose mixing ratios are assumed to be constant with altitude, are CO2, N2, He, Ne, Ar, and Kr. Gases that have been identified in the lower and/or middle atmosphere, but whose mixing ratios may depend on altitude, latitude and/or local time, are CO, H2O, HCl, HF, and SO2. Conflicting data or only upper limits exist on some important trace gases, such as O2, H2, and Cl2. The latter two are key constituents in the photochemistry of the middle atmosphere of Venus. The chapter concludes with a listing of the isotopic abundances of elements measured in the Venus atmosphere.  相似文献   

5.
This work shows the capability of observing Venus with a sensor originally designed for Earth remote sensing. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY), onboard ENVISAT, successfully observed visible and near-infrared spectra from the Venusian atmosphere. The Venus spectra were simulated using a line-by-line radiative transfer model. The single scattering approximation was applied in order to consider the effects of an approximately 20 km-thick haze layer above the main cloud deck, which was considered as a reflecting cloud located in the upper atmosphere of the planet. CO2 absorption lines could be distinguished in both observed and simulated spectra and a good agreement between them was also found.  相似文献   

6.
Model calculations of the dayside ionosphere of Venus are presented. The coupled continuity and momentum equations were solved for O2+, O+, CO2+, C+, N+, He+, and H+ density distributions, which are compared with measurements from the Pioneer Venus ion mass spectrometer. The agreement between the model results and the measurements is good for some species, such as O+, and rather poor for others, such as N+, indicating that our understanding of the dayside ion composition of Venus is incomplete. The coupled heat conduction equations for ions and electrons were solved and the calculated temperatures compared with Pioneer Venus measurements. It is shown that fluctuations in the magnetic field have a significant effect on the energy balance of the ionosphere.  相似文献   

7.
In situ measurements of the thermal ion composition of the ionosphere of Venus have been obtained for a period of two Venus years from the Bennett rf ion mass spectrometer on the Pioneer Venus Orbiter. Ion measurements within an altitude interval of 160 to 300 kilometers, corresponding to an overall latitude interval of about ?4° to 34°N, are assembled from the interval December 1978 to March 1980. This time interval corresponds to two revolutions of Venus about the Sun, designated as two “diurnal cycles”. The distributions of several ion species in this data base have been sorted to identify temporal and spatial variations, and to determine the feasibility of an analytical representation of the experimental results. The first results from the sorting of several prominent ions including O+, O2+, and H+ and several minor ions including CO2+, C+, and H2+ reveal significant diurnal variations, with superimposed modulation associated with solar activity and solar wind variations. The diurnal variation consists of strong day to night contrast in the ion concentrations, with differences of one to two orders of magnitude, depending upon ion mass and altitude. The concentrations of O2+, O+, CO2+ and C+ peak throughout the dayside decreasing sharply at the terminators to nightside levels, lower by one to two orders of magnitude relative to the dayside. The diurnal variations of the light ions H+ and H2+ peak during the night, exhibiting asymmetric nightside bulges favoring the pre-dawn sector, near 0400 solar hour angle. Superimposed upon the diurnal distributions are modulation signatures which correlate well with modulation in the F10.7 index, indicating a strong influence of solar variability on the ion production and distribution. The influence of solar wind perturbations upon the ion distributions are also indicated, by a significant increase in the scatter of the observations with increasing altitude as higher altitudes, approaching 300 kilometers, are sampled. Together, these temporal and spatial variations make the task of modelling the ionosphere of Venus both very interesting and challenging.  相似文献   

8.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

9.
The concentrations of neutral hydrogen within the atmosphere of Venus are investigated for the period 1979–1980. During this period, the planet made nearly three orbits about the Sun, so that nearly three complete diurnal cycles were observed from the Pioneer Venus Orbiter (PVO). Values of n(H) are derived from in-situ ion and neutral composition measurements from the Orbiter Ion Mass Spectrometer (OIMS) and the Orbiter Neutral Mass Spectrometer (ONMS) using a charge exchange relationship involving O+, H+, O and CO2. The dawn bulge in the diurnal distribution of n(H), reported from the first diurnal cycle by Brinton et al., is found to persist with n(H) peaking at levels near 2 - 5 × 107/cm3 at altitudes below 165 km. At peak levels, the bulge exhibits a concentration ratio up to 400/1 relative to dayside values. Large day to day variations of up to a factor of five in n(H) are frequently encountered, and are attributed to perturbations induced by the solar wind interaction. These short term variations, plus a suggestion of some local time variation in the bulk location, make precise assessment of interannual variations in the n(H) difficult. Between the first diurnal cycle in early 1979 and the third in mid 1980, the decline in solar euv flux was of the order of 10% or less. Allowing for uncertainties due to short term variations, no clear evidence is found for an interannual variation in the hydrogen concentrations.  相似文献   

10.
Several ground-based observations of the Venus 1.27-μm O2 airglow were carried out from 2002 to 2005. Spectral image cubes were taken with the Okayama Astrophysical Observatory/infrared imaging spectrometer (superOASIS), the Gunma Astronomical Observatory/Cassegrain Near-Infrared Camera and NASA’s Infrared Telescope Facility/cryogenic echelle spectrograph (CSHELL). The brightest airglow features were found at around the anti-solar point, which is in agreement with previous studies. We derived the rotational temperature distributions on the nightside hemisphere from observed airglow spectra. The temperature shows a weak positive correlation with the airglow intensity. The result indicates the bright region is heated chemically and/or dynamically, and supports the existing scenario for the Venus O2 airglow. That is, the airglow is excited by the descending oxygen transported from the dayside.  相似文献   

11.
Ozone (O3) and sulfur dioxide (SO2) in a vertical column of the atmosphere in Thailand were obtained from the Brewers#121 and #120. There are similarities between the O3 patterns obtained from the two sites, which are higher in the summer and rainy season compared with winter, although the magnitude of the change in Bangkok is greater than that in Songkhla. SO2 values showed the summer months provide the higher SO2 values in Bangkok, in contrast to Songkhla where the summer months give lower SO2 values.  相似文献   

12.
A radiative-convective equilibrium model is developed and applied to study cloud optical thickness feedbacks in the CO2 climate problem. The basic hypothesis is that in the warmer and moister CO2-rich atmosphere, cloud liquid water content will generally be larger than at present, so that cloud optical thickness will be larger too. For clouds other than thin cirrus, the result is to increase the albedo more than to increase the greenhouse effect. Thus the sign of the feedback is negative: cloud optical properties alter in such a way as to reduce the surface and tropospheric warming caused by the addition of CO2. This negative feedback can be substantial. When observational estimates of the temperature dependence of cloud liquid water content are employed in the model, the surface temperature change due to doubling CO2 is reduced by about one half.  相似文献   

13.
Corrected thermal net radiation measurements from the four Pioneer Venus entry probes at latitudes of 60°N, 31°S, 27°S, and 4°N are presented. Three main conclusions can be drawn from comparisons of the corrected fluxes with radiative transfer calculations: (1) sounder probe net fluxes are consistent with the number density of large cloud particles (mode 3) measured on the same probe, but the IR measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5×10?5 near 60°, 2–5×10?4 near 30°, and >5×10?4 near the equator.  相似文献   

14.
This work is devoted to the derivation of the optical properties of the Venus atmosphere from “Venera-10” optical measurements. Within the framework of a two-layer model of Venus atmosphere it is found that in the spectral interval 0.52 – 0.85 μm the optical thickness of the upper cloud layer is ≈ 50 and the optical parameters of the lower layer are similar to the Rayleigh ones. Comparison is made between the measurements of radiation field within the atmosphere and the results of strict calculations. A preliminary conclusion is suggested that there are considerable numbers of aerosol particles with a radius ? 0.03 μm in the lower layer. The results of the upper boundary of the cloud layer is estimated to be ≈ 70 km.  相似文献   

15.
Calculations are presented of the vibrational distribution of O2+ in the Venusian ionosphere for a model atmosphere based on Pioneer Venus data. At 100 km, quenching precludes the survival of vibrationally excited O2+. At the exobase, near 200 km, more than half are vibrationally excited. The effects of vibrationally excited O2+ on the hot oxygen corona and the airglow are discussed.  相似文献   

16.
Vertical trajectory data from the VEGA 1 and 2 balloon flights in the atmosphere of Venus is re-analyzed. A previously employed helium leak rate profile invoked to entirely account for the decrease in equilibrium float altitude of VEGA 2 is questioned and deemed ad hoc. As an alternative, it is proposed that both VEGA 1 and 2 experienced in-flight mass increases due to the deposition of cloud particles onto their envelopes, as well as losing helium at a reduced rate consistent with the pre-flight prediction. Particle deposition rates are estimated and found to be compatible with this alternative scenario. Possible evidence for drizzle is also presented. Preliminary experiments to derive aerosol deposition rate on a flat plate and the maximum feasible liquid mass that may be accumulated on a near-spherical envelope are briefly described. Further experimental work is recommended to constrain the deposition efficiency values involved and the maximum feasible drizzle fluxes that could have been encountered by both VEGA 1 and 2.  相似文献   

17.
Statistics of cloud characteristics over North America during winter of 1985–86 have been calculated. The frequency of cloud cover with associated heights and infrared attenuation were charted using the CO2 channel radiometric data from the geostationary VISSR Atmospheric Sounder (VAS). Cloud top pressures were determined from the ratio of VAS CO2 channel radiances in a radiative transfer equation formulation. Cloud emissivities were then calculated from infrared window channel observations. CO2 technique derived height and emissivity assignments have been found to be reliable in all cloud types, including thin cirrus clouds where other techniques have been inconsistent. Observations during November 1985 revealed that 25% of the United States was covered with thin clouds (radiative attenuation was less than 80%), 50% was covered with thick opaque clouds, and 25% had clear sky conditions. Geographical distribution of cloud cover over the United States for the winter of 1985–86 shows a strong latitudinal dependence. Cirrus reports in frequencies of 15% in the south increase to 30% in the northwest.  相似文献   

18.
Continued analysis of Pioneer Venus imaging and polarimetry data indicates that the average cloud-top level circulation is mainly zonal (east to west) with a small meridional component. Presence of planetary scale waves and a possible sun-related component are evident in the data. If the tracked features refer to the same vertical level, then some variability of the circulation would have to be present to account for the Pioneer and Mariner 10 cloud-tracking results. However, the implied balanced flow from the observed thermal structure analysis strongly suggests that at least some of the variations in these observations is due to apparent cloud-top variations and that the circulation itself is relatively stable.Direct cyclostrophic calculations based on the observed thermal structure of the atmosphere yield a balanced zonal circulation with distinct mid-latitude jets (peak velocities about 110–120 ms?1) located between 50 and 40 mb in each hemisphere of the planet near 45° latitude. The calculations which extend to about 40 km altitude from 80 km above the surface agree well with the observed entry probe zonal components and indicate breakdown of the balance condition near the upper and lower boundaries at low latitudes.The balanced flow results are consistent with the Mariner 10 and Pioneer cloud tracked estimates of the zonal circulation provided the effective altitude of the tracked features is slightly different at different observation periods. The features in the Pioneer Venus data would then lie on a sloping surface that extends from about 68 km (40 mb) at low latitudes to about 75 km (10 mb) in mid-latitudes. The polarization features would occur on a roughly parallel surface that is 1–2 km above the effective cloud-height surface, and Mariner 10 features would have effective altitudes somewhat lower than the Pioneer ultraviolet features. A slight asymmetry is evident in the balanced zonal circulation arising out of an asymmetry in the thermal field.Finally, the solenoids formed by intersecting isobaric and isosteric (constant specific volume) surfaces deduced from the Pioneer Venus radio occultation data show distinct evidence of a direct meridional circulation that may be important in sustaining the Venus atmospheric circulation.  相似文献   

19.
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability.  相似文献   

20.
The Solar Flux Radiometer (LSFR) experiment on the large probe of the Pioneer Venus (PV) mission made detailed measurements of the vertical profile of the upward and downward broadband flux of sunlight at a solar zenith angle of 65.7°. These data have been combined with cloud particle size distribution measurements on the PV mission to produce a forward-scattering model of the Venus clouds. The distribution of clouds at high altitudes is constrained by measurements from the PV orbiter. Below the clouds the visible spectrum and flux levels are consistent with Venera measurements at other solar zenith angles. The variations in the optical parameters with height and with wavelength are summarized in several figures. The model is used to evaluate the solar heating rate at cloud levels as a function of altitude, solar longitude, and latitude for use in dynamical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号