首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 181 毫秒
1.
The electron temperature (Te) variation in the mid-latitude ionosphere at altitudes between 120 – 800 km has been modelled for various seasonal and solar-cycle conditions. The calculated electron temperatures are consistent with plasma densities and ion temperatures computed from a time-dependent ionospheric model. The Te distribution can be represented by a subset of standard Te profiles. Te above 200 km is controlled by the magnetospheric heat flux into the ionosphere. For realistic values of the magnetospheric heat flux, the maximum electron temperature ranges from 3000 to 10,000 K at 800 km. The effect of increasing the heat flux is to increase the topside temperature but retain the profile shape. Hence, given a topside Te observation and selection of an appropriate profile shape, the entire Te distribution can be computed.  相似文献   

2.
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research.  相似文献   

3.
极区顶部电离层离子上行的太阳活动依赖性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
利用第23太阳活动周DMSP F12,F13和F15卫星数据,分别对南北半球极区顶部电离层离子上行的太阳活动依赖性进行了研究.结果表明,南北半球上行事件对太阳活动的响应特征基本一致,即高(低)太阳活动时,离子上行通量以及上行数密度较大(小),但是上行速度及上行发生率较低(高).以南半球高纬为例,计算得到离子上行通量、数密度、速度及发生率在高低太阳活动条件下的比值分别约为2.26,3.35,0.71,0.51.对离子上行太阳活动依赖性的可能原因进行了分析.不同太阳活动水平下,光致电离及高能粒子沉降的差异会导致电离层离子密度的不同,而电离层离子密度的变化会改变离子elax-elax中性大气之间的碰撞频率,这是影响离子上行发生率的一个重要原因.   相似文献   

4.
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.  相似文献   

5.
The paper describes the technique that has been implemented to model the electron density distribution above and below the F2 peak making use of only the profiles obtained from the INTERCOSMOS-19 topside ionograms. Each single profile from the satellite height to the ionosphere peak has been fitted by a semi-Epstein layer function of the type used in the DGR model with shape factor variable with altitude. The topside above the satellite height has been extrapolated to match given values of plasmaspheric electron densities to obtain the full topside profile. The bottomside electron density has been calculated by using the maximum electron density and its altitude estimated from the topside ionogram as input for a modified version of the DGR derived profiler that uses model values for the foF1 and foE layers of the ionosphere. Total electron content has also been calculated. Longitudinal cross sections of vertical profiles from latitudes 50° N to 50° S latitude are shown for low and high geomagnetic activity. These cross sections indicate the equatorial anomaly effect and the changes of the shape of low latitude topside ionosphere during geomagnetic active periods. These results and the potentiality of the technique are discussed.  相似文献   

6.
We have studied the topside nighttime ionosphere of the low latitude region using data obtained from DMSP F15, ROCSAT-1, KOMPSAT-1, and GUVI on the TIMED satellite for the period of 2000–2004, during which solar activity decreased from its maximum. As these satellites operated at different altitudes, we were able to discriminate altitude dependence of several key ionospheric parameters on the level of solar activity. For example, with intensifying solar activity, electron density was seen to increase more rapidly at higher altitudes than at lower altitudes, implying that the corresponding scale height also increased. The density increased without saturation at all observed altitudes when plotted against solar EUV flux instead of F10.7. The results of the present study, as compared with those of previous studies for lower altitudes, indicate that topside vertical scale height increases with altitude and that, when solar activity increases, topside vertical scale height increases more rapidly at higher altitudes than at lower altitudes. Temperature also increased more rapidly at higher altitudes than at lower altitudes as solar activity increased. In addition, the height of the F2 peak was seen to increase with increasing solar activity, along with the oxygen ion fraction measured above the F2 peak. These results confirm that the topside ionosphere rises and expands with increasing solar activity.  相似文献   

7.
In the present paper, plasma probe data taken from DEMETER and DMSP-F15 satellites were used to study the ion density and temperature disturbances in the morning topside ionosphere, caused by seismic activity at low latitudes. French DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) micro-satellite mission had been especially designed to provide global scale observations in the topside ionosphere over seismically active regions. Onboard the DEMETER satellite, the thermal plasma instrument called “Instrument Analyser de Plasma” (IAP) provides ion mass and densities, ion temperature, three component ion drift and ion density irregularities measurements. As a part of “Defense Meteorological Satellite Program”, DMSP-F15 satellite is on orbit operation since 1999. It provides ionospheric plasma diagnostics by means of the “Special Sensor-Ion, Electron and Scintillations” (SSIES-2) instrument. We examined few examples of possible seismic effects in the equatorial ionosphere, probably associated with seismic activity during December month in the area of Sumatra Island, including main shock of giant Sumatra event. It is found that the localized topside ionospheric disturbances appear close to the epicenters of certain earthquakes in the Sumatra region. In two cases, ion H+/O+ ratio rises more than one hour before the main shock, due to the O+ density decrease at the winter side of the geomagnetic equator, with longitudinally closest location to the epicenter of the earthquakes. These anomalous depletions in O+ density do exist in all cases of SSIES-2 data. Particularly for Sumatra main event, more than one hour after the main shock, we observe large-scale depletion in O+ density northward of the geomagnetic equator at winter side hemisphere. Associated with O+ depletion, ion temperature latitudinal profile around the geomagnetic equator shows enhanced asymmetry with minimum at the summer side and maximum in positive Ti deviation from mean value at the winter side. This disturbance lasted for more than three hours, later in time observed at the same place by IAP/DEMETER.  相似文献   

8.
大量的实验研究表明, 在顶部极光区电离层, 利用EISCAT非相干散射雷达和Millstone Hill雷达可以观测到不对称、增强的离子声波谱线. 考虑到低能H+离子束沉降到背景电离层, 以及电离层顶部O+离子的外流事件, 采用含有场向热流项的双麦克斯韦分布描述H+离子束的分布函数, 进而基于离子-离子双流不稳定性理论来解释增强的离子声波谱线. 场向热流的引入可以减小离子声波谱线的不对称现象, 这样得到的结果更符合实际.   相似文献   

9.
During 2008, the solar activity is extremely low. The satellite observations show that the ionospheric height and electron density is much lower than the predictions by the international reference ionosphere (IRI) model. In this paper, we compared the slant total electron content (TEC) observed by the COSMIC satellites during 2008 with the IRI model results. It is found that the IRI model with IRI2001 and IRI2001 Cor. topside options will always overestimate the electron density in both lower and higher altitudes. But the rest two topside options (NeQuick, and TTS) tend to overestimate the electron density in the F layer and underestimate it in the topside altitudes. The switch altitude between overestimation and underestimation and the latitude-local time distribution of the model deviation depend on the topside option. The current investigation might be useful for the model improvement as well as data assimilation work based on the IRI model and the LEO TEC data.  相似文献   

10.
A mathematical model is used to study the relative abundance of H+ and He+ ions in the topside ionosphere. It is found that the daytime light-ion densities are strongly coupled with the neutral densities. This fact arises difficulties in modelling the ion composition for IRI without taking into account any particular reference atmosphere. As an example, the transition heights between O+---H+ and O+---He+ are shown, plotted against the neutral densities. The supposed linear dependance gives a clear evidence that all light-ion ionization below these heights will experience stronger influence by the neutral atmosphere.  相似文献   

11.
The topside ionosphere parameters are studied based on the long-duration Irkutsk incoherent scatter radar (52.9N, 103.3E) measurements conducted in September 2005, June and December 2007. As a topside ionosphere parameter we chose the vertical scale height (VSH) related to the gradient of the electron density logarithm above the peak height. For morphological studies we used median electron density profiles. Besides the median behavior we also studied VSH disturbances (deviations from median values) during the magnetic storm of September 11th 2005. We compared the Irkutsk incoherent scatter radar data with the Millstone Hill and Arecibo incoherent scatter radar observations, the IRI-2007 prediction (using the two topside options) and VSH derived from the Irkutsk DPS-4 Digisonde bottomside measurements.  相似文献   

12.
The diurnal, seasonal and latitudinal variations of the electron temperature in the Earth‘s topside ionosphere during relatively low solar activity period of 2005 – 2008 are investigated. In order to examine seasonal variations and morphology of the topside ionospheric plasma temperature, CNES micro-satellite DEMETER ISL data are used. Presented study is oriented on the dataset gathered in 2005 and 2008. Within conducted analysis, global maps of electron temperature for months of equinoxes and solstices have been developed. Furthermore, simultaneous studies on two-dimensional time series based on DEMETER measurements and predictions obtained with the IRI-2012 model supply examination of the topside ionosphere during recent deep solar minimum. Comparison with the IRI-2012 model reveals discrepancies between data and prediction, that are especially prominent during the periods of very low solar activity.  相似文献   

13.
Ground-based vertical incidence soundings are well suited to model the bottom-side ionosphere but are not so good for dependably modelling the topside ionosphere. This study aims to combine vertical incidence sounding and dual-frequency GPS measurements to reconstruct the topside profile. The reconstruction technique relays on the use of the so-called vary-Chap approach that use an α-Chapman function with a continuously varying scale height.  相似文献   

14.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   

15.
通过数值模拟研究了赤道地区和中纬度地区扩展F的触发机制间的联系,发现相同的触发机制在不同纬度的条件下所演化出的结构形态不相同,因此观测上会有所不同;研究了西向电场在赤道地区的作用,发现在适合的电离层参数组合下会产生观测到的电离层F区顶部扰动出现率高于底部扰动出现率的状况;在数值模拟的基础上提出了一个中纬度地区电波散射的模型,用以解释观测到的中纬度地区电波散射的出现率高于线性理论预期的现象.   相似文献   

16.
FORMOSAT-5 satellite was launched into a sun-synchronous orbit at 720 km altitude with 98.28° inclination on 25 August 2017. The onboard scientific payload, Advanced Ionospheric Probe (AIP) is capable of measuring topside ionospheric ion density, cross-track flow velocities, ion composition and temperature, and electron temperature. Initial observations of nighttime midlatitude ionospheric density and vertical flow velocity variations at 2230 LT sector during a few quiet magnetic days in December 2017 are studied here. Longitudinal density variations in the equatorward edge of midlatitude ionospheric trough (MIT) region are noticed. Accompanied with this density variation, the vertical flow velocities also behave differently. Although the density difference has been stated due to zonal wind effect related to the declination of the geomagnetic field lines, the vertical flow velocity variation seems to play the opposite role. All these density and vertical flow observations in the northern winter hemisphere can only be explained by the longitudinal differences in the diffusion velocity coming down from the protonsphere (plasmasphere). In addition, the hemispheric asymmetry in the vertical flow velocity can also be explained by the interaction between the topside ionosphere and the protonsphere. The observed vertical flow variations near MIT at different longitudes should present a new potential tool for the study of MIT formation.  相似文献   

17.
The ionospheric topside sounder measurement database developed at the US National Space Science Data Center (NSSDC) is a valuable source of information when investigating the composition and complex dynamics of the upper ionosphere. The database is increasingly used by many scientists around the world for both research and development of empirical models. However, there is always a danger of indiscriminately using the data without properly assessing the data quality and applicability for a given purpose. This paper is concerned with the issue of data screening and pre-processing of the Alouette/ISIS topside sounder database. An overview of the original database availability and formatting is given and the use of solar and geomagnetic indices is discussed. Data screening procedures, concerning detection and handling of erroneous profiles, are also presented. Special attention is drawn to the systematic biases observed in the database and the possibilities for their removal.  相似文献   

18.
We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out using the model of the entire atmosphere EAGLE. The ionization rates for the considered period were acquired from the AIMOS (Atmospheric Ionization Module Osnabrück) dataset. For numerical experiments, we applied only the proton-induced ionization rates of that period, while all the other model input parameters, including the electron precipitations, corresponded to the quiet conditions. In January 2005, two major solar proton events with different energy spectra and proton fluxes occurred on January 17 and January 20. Since two geomagnetic storms and several sub-storms took place during the considered period, not only solar protons but also less energetic magnetospheric protons contributed to the calculated ionization rates. Despite the relative transparency of the thermosphere for high-energy protons, an ionospheric response to the SPE and proton precipitation from the magnetotail was obtained in numerical experiments. In the ionospheric E layer, the maximum increase in the electron concentration is localized at high latitudes, and at heights of the ionospheric F2 layer, the positive perturbations were formed in the near-equatorial region. An analysis of the model-derived results showed that changes in the ionospheric F2 layer were caused by a change in the neutral composition of the thermosphere. We found that in the recovery phase after both solar proton events and the enhancement of magnetospheric proton precipitations associated with geomagnetic disturbances, the TEC and electron density in the F region and in topside ionosphere/plasmasphere increase at low- and mid-latitudes due to an enhancement of atomic oxygen concentration. Our results demonstrate an important role of magnetospheric protons in the formation of negative F-region ionospheric storms. According to our results, the topside ionosphere/plasmasphere and bottom-side ionosphere can react to solar and magnetospheric protons both with the same sign of disturbances or in different way. The same statement is true for TEC and foF2 disturbances. Different disturbances of foF2 and TEC at high and low latitudes can be explained by topside electron temperature disturbances.  相似文献   

19.
Recent measurements by Mars Global Surveyor and Mars Express have greatly increased the number of observations of the martian dayside ionosphere available for study. Together with earlier measurements from the Viking era, these datasets have been used to investigate variations in well-known properties of the martian dayside ionosphere and to discover new ionospheric features. The dayside ionosphere includes the main peak, called the M2 layer, and a lower layer, called the M1 layer. In the topside, above the M2 layer, electron densities exponentially decrease with increasing altitude.  相似文献   

20.
一、前言 电离层对空间通讯系统、航天飞机、宇宙飞船、运载火箭、洲际导弹的遥测遥控的影响,往往以电子含量及时空结构与变化的形式表现.为考虑到与测高仪资料的配合和布站的合理,于1981年6月开始陆续在海口、满州里、乌鲁木齐建立了三个多普勒观测站,以获取总含量和测高仪的资料,进行上、下电离层的联合分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号