首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cloudiness modulates the radiation budget at the top of the Earth-atmosphere system. For radiation balance studies, for climate diagnostic studies, and for climate modeling studies, it is important to know the sensitivity of both the outgoing longwave radiation and the net (absorbed solar minus outgoing longwave) radiation of the system to changes in cloudiness on a global basis. Based on a 45 month series of NOAA satellite scanning radiometer observations, estimates of the global distribution of these sensitivity parameters are obtained.  相似文献   

2.
The planetary outgoing longwave radiation has been estimated since 1974 from two different series of NOAA operational polar spacecraft. The first series provided data from June 1974 through February 1978 and was designated “SR” for the scaning radiometers used at that time. This data set has been used in a variety of radiation budget and climate studies, such as that by Ohring and Gruber, 1983. The second satellite system is the currently operational TIROS-N series of satellites. Data from this series began in January 1979 and are continuing. In both systems, estimates of the outgoing longwave radiation are obtained from narrow spectral interval (10–12 μm) window radiances. A comparison is made of the estimates from the two different series of satellites in order to arrive at an assessment of their compatibility. This is important since the SR observations were taken at approximately 0900 and 2100 local times, while the TIROS-N data alternate between 0730-1930 and 0300-1500 local times. In addition, there is a period of overlap between the TIROS-N data and the broad band (5–50 μm) Nimbus 7 EArth radiation budget data. A comparison of those two data sets indiciate excellent agreement generally within about 1–2 Wm?2 on the monthly means on global and hemispherical scales. Comparisons of zonal averages indicate maximum differences as large as 9 Wm?2.Evidence is presented to suggest that observations taken at different local observing times may be biased by the diurnal variation of emitted flux, even on global scales.  相似文献   

3.
The Clouds and Earth Radiant Energy System (CERES) project’s objectives are to measure the reflected solar radiance (shortwave) and Earth-emitted (longwave) radiances and from these measurements to compute the shortwave and longwave radiation fluxes at the top of the atmosphere (TOA) and the surface and radiation divergence within the atmosphere. The fluxes at TOA are to be retrieved to an accuracy of 2%. Improved bidirectional reflectance distribution functions (BRDFs) have been developed to compute the fluxes at TOA from the measured radiances with errors reduced from ERBE by a factor of two or more. Instruments aboard the Terra and Aqua spacecraft provide sampling at four local times. In order to further reduce temporal sampling errors, data are used from the geostationary meteorological satellites to account for changes of scenes between observations by the CERES radiometers.  相似文献   

4.
5.
At the estimation of the sensitivity three variable parameters must be taken into account: cloud amount, cloud albedo and cloud-top height. Cloud albedo is considered to be a parameter that varies according to a given formula. The effective cloud amount and outgoing longwave flux from cloudy atmosphere have been computed on the basis of the satellite measured planetary albedo and the outgoing flux data, using additional information about planetary albedo and the outgoing longwave flux in clear-sky conditions. The latter quantities have been computed from the mean contemporary climatic data. The estimation of the sensitivity is carried out in two cases: if the effective cloud amount and cloud-top height variations are independent or not. The corresponding statistical tests are presented.  相似文献   

6.
Intercomparisons of the zonally averaged outgoing longwave fluxes estimated from 10 μm radiance observations on NOAA polar orbiters and flat plate observations on the Nimbus 6 ERB experiment have shown the NOAA estimates to be higher than the ERB measurements. Our analysis shows that the operational technique systematically overestimates calculated fluxes for middle and high cloud conditions. A different radiative transfer model and new assumptions concerning clouds reduce the NOAA-ERB flux difference by approximately 35%.  相似文献   

7.
The extraordinary El-Nino event of 1982–83 started to fade out in the late spring of 1983. However the sea surface temperature of the Eastern Equatorial Pacific still remained warmer than normal in the following summer. To investigate the characteristics of this late transition phase of the 1982–83 El-Nino, the GOES-West satellite data of July and August of 1983 are analyzed. The outgoing longwave radiation field and the distribution of cloudiness, which was derived by using a new threshold technique, are obtained. The longwave radiation field is compared to monthly average climatic indices commonly used at the Climatic Analysis Center. The results of cloud analysis showed some interesting features during the decaying phase of the 1982–83 El-Nino. The diurnal variation of cloudiness indicates that total cloud amounts decrease from 8 GMT to 20 GMT over most of the area. This overall study demonstrates preliminary results of the International Satellite Cloud Climatology Project of the World Climate Research Program.  相似文献   

8.
We describe the approach to be adopted for a major new initiative to derive a homogeneous record of sea surface temperature for 1991–2007 from the observations of the series of three along-track scanning radiometers (ATSRs). This initiative is called (A)RC: (Advanced) ATSR Re-analysis for Climate. The main objectives are to reduce regional biases in retrieved sea surface temperature (SST) to less than 0.1 K for all global oceans, while creating a very homogenous record that is stable in time to within 0.05 K decade−1, with maximum independence of the record from existing analyses of SST used in climate change research. If these stringent targets are achieved, this record will enable significantly improved estimates of surface temperature trends and variability of sufficient quality to advance questions of climate change attribution, climate sensitivity and historical reconstruction of surface temperature changes. The approach includes development of new, consistent estimators for SST for each of the ATSRs, and detailed analysis of overlap periods. Novel aspects of the approach include generation of multiple versions of the record using alternative channel sets and cloud detection techniques, to assess for the first time the effect of such choices. There will be extensive effort in quality control, validation and analysis of the impact on climate SST data sets. Evidence for the plausibility of the 0.1 K target for systematic error is reviewed, as is the need for alternative cloud screening methods in this context.  相似文献   

9.
The U.S. Air Force Real Time Nephanalysis (RT NEPH) is incorporated into the NMC Medium Range Forecast Model (MRF) to explore the impact of cloudiness on the model's radiation parameterization. After transfering to MRF model coordinate, RT NEPH is in qualitative agreement with ERBE Scene ID. The zero-hour “forecast” of outgoing longwave radiation (OLR) of 00GMT Nov. 9, 1984 is compared with that derived from NOAA AVHRR observation and the preliminary ERBE result. The comparison shows that the greater difference in OLR are from cloudy sky regions, in spite of qualitative agreement on the structures. The result suggests that for proper simulation of OLR, a refinement of the model cloud parameterization or nephanalysis on the prescribed data would be more effective than on radiative transfer scheme.  相似文献   

10.
There are extensive reports of ionospheric disturbances before the great 2008 Wenchuan earthquake, which are possibly explained by seismogenic electric field hypotheses linked with the aerosols injected in atmosphere. This paper attempts to investigate the possible change of atmospheric aerosol optical depth (AOD) associated with this earthquake by using MODIS data from both Terra and Aqua satellites. The result shows a clear enhancement of AOD along the Longmenshan faults 7 days before the quake, which is 1 day and 4 days earlier than the reported negative and positive ionospheric disturbances, respectively, and is 1 day earlier than or quasi-synchronism with other reported atmospheric anomalies including air temperature, outgoing longwave radiation and relative humidity. Particularly, the spatial distribution of AOD enhancement is very local and it is correlated well with the active faults and surface ruptures. We suggest that this unique enhancement could be associated with the Lithosphere–Atmosphere–Ionosphere coupling process during the preparation of the Wenchuan earthquake.  相似文献   

11.
We present the results of a study of anomalies, which are defined as differences of seasonal means from the data set seasonal means, in the Earth's radiation budget from the analysis of nine years of ten day mean observations derived from the NOAA polar orbiter satellites for the period, 1974–1983. We estimate that the standard deviation in the outgoing longwave flux for this period is less than 12 Wm?2 and typically 7 Wm?2. The results show that there are several geographical areas for which the standard deviation is in excess of 20 Wm?2; in such regions the radiation budget anomalies exceeded these due to natural atmospheric variability. In this paper we discuss the relationship of these anomalies with climatic change.  相似文献   

12.
The Earth Radiation Budget Experiment (ERBE) consists of radiometers on a dedicated spacecraft in a 57° inclination orbit, which has a precessional period of 2 months, and on two NOAA operational meteorological spacecraft in near polar orbits. The radiometers include scanning narrow field-of-view (FOV) and nadir-looking wide and medium FOV radiometers covering the ranges 0.2 to 5 μm and 5 to 50 μm and a solar monitoring channel. This paper describes the validation procedures and preliminary results. Each of the radiometer channels underwent extensive ground calibration, and the instrument packages include in-flight calibration facilities which, to date, show negligible changes of the instruments in orbit, except for gradual degradation of the suprasil dome of the shortwave wide FOV (about 4% per year). Measurements of the solar constant by the solar monitors, wide FOV, and medium FOV radiometers of two spacecraft agree to a fraction of a percent. Intercomparisons of the wide and medium FOV radiometers with the scanning radiometers show agreement of 1 to 4%. The multiple ERBE satellites are acquiring the first global measurements of regional scale diurnal variations in the Earth's radiation budget. These diurnal variations are verified by comparison with high temporal resolution geostationary satellite data.  相似文献   

13.
Understanding the balance between incoming radiation from the Sun and outgoing radiation from Earth is of critical importance in the study of climate change on Earth. As the only natural satellite of Earth, the Moon is a unique platform for the study of the disk-wide radiation budget of Earth. There are no complications from atmosphere, hydrosphere, or biosphere on the Moon. The nearside of the Moon allows for a focus on the solar radiation during its daytime, and on terrestrial radiation during its nighttime. Additionally, lunar regolith temperature is an amplifier of the terrestrial radiation signal because lunar temperature is proportional to the fourth square root of radiation as such is much more sensitive to the weak terrestrial radiation in nighttime than the strong solar radiation in daytime. Indeed, the long-term lunar surface temperature time series obtained inadvertently by the Heat Flow Experiment at the Apollo 15 landing site three decades ago may be the first important observation from deep space of both incoming and outgoing radiation of the terrestrial climate system. A revisit of the lunar surface temperature time series reveals distinct characteristics in lunar surface daytime and nighttime temperature variations, governed respectively by solar and terrestrial radiation.  相似文献   

14.
Because space-borne radiometers do not measure the Earth’s outgoing fluxes directly, angular distribution models (ADMs) are required to relate actual radiance measurement to flux at given solar angle, satellite-viewing geometries, surface, and atmospheric conditions. The conversion of one footprint broad-band radiance into the corresponding flux requires therefore one to first characterize each footprint in terms of surface type and cloud cover properties to properly select the adequate ADM.

A snow (and sea-ice) retrieval technique based on spectral measurements from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8 is presented. It has been developed to improve the scene identification and thus the ADM selection in the near-real time processing of the Geostationary Earth Radiation Budget (GERB) data at the Royal Meteorological Institute of Belgium. The improvement in the GERB short wave flux estimations over snow covered scene types resulting from angular conversion using dedicated snow ADMs (e.g., empirical snow ADMs and/or pre-computed theoretical snow ADM) instead of empirical snow-free ADMs is discussed.  相似文献   


15.
The Advanced Along-Track Scanning Radiometer (AATSR) was launched on Envisat in March 2002. The AATSR instrument is designed to retrieve precise and accurate global sea surface temperature (SST) that, combined with the large data set collected from its predecessors, ATSR and ATSR-2, will provide a long term record of SST data that is greater than 15 years. This record can be used for independent monitoring and detection of climate change. The AATSR validation programme has successfully completed its initial phase. The programme involves validation of the AATSR derived SST values using in situ radiometers, in situ buoys and global SST fields from other data sets. The results of the initial programme presented here will demonstrate that the AATSR instrument is currently close to meeting its scientific objectives of determining global SST to an accuracy of 0.3 K (one sigma). For night time data, the analysis gives a warm bias of between +0.04 K (0.28 K) for buoys to +0.06 K (0.20 K) for radiometers, with slightly higher errors observed for day time data, showing warm biases of between +0.02 (0.39 K) for buoys to +0.11 K (0.33 K) for radiometers. They show that the ATSR series of instruments continues to be the world leader in delivering accurate space-based observations of SST, which is a key climate parameter.  相似文献   

16.
Two procedure are presented for quantitative estimation of cloud cover (N), type of clouds (C), as well as base of clouds (Cb) and top of clouds (Ct) by using radiosonde data as well as satellite cloud pictures and radiation data. The data obtained in this way can be used as input data in the model for the estimation of the vertical profile of longwave radiative cooling.  相似文献   

17.
In this paper, the shortwave and longwave anisotropy for clear sky Indian desert scene has been estimated using long-term surface data, radiative transfer calculations and Helmholtz reciprocity for missing values. This study is important in the perspective of the low inclination satellites like Megha–Tropiques (MT) mission, carrying Scanner for Radiation Budget (ScaRaB) payload, which will provide broadband radiative fluxes at the top of the atmosphere (TOA). Due to low inclination angle, the angular models for clear sky land scenes for the MT-ScaRaB orbits will be dominated by desert points.The Angular Distribution Models (ADMs) determined in this study were compared with existing desert models. It is observed that for longwave radiation, the largest disagreement is observed for higher values of viewing zenith angle, especially for the summer season, where the difference in flux can reach up to 13 W/m2. For the shortwave radiation, higher values of both solar zenith angle and viewing zenith angle cause largest incongruity in the computed albedo from the different models, suggesting the need of caution in interpretation of the flux computations from these bins. In fact at the higher solar zenith angle bin, the disparity in albedo can go up to 6.4%.  相似文献   

18.
Seasonal-to-interannual variability of the winter-spring bloom in the Gulf of Cádiz, eastern North Atlantic, has been investigated using chlorophyll-a remote sensing (CHL). These data have been obtained from the GlobColour project; the temporal coverage extends from September 1997 to December 2010. In this study we develop a generic quantitative approach for describing the temporal variability in the shape of the winter-spring bloom within a region. Variability in both the timing and magnitude of the bloom in the basin has been evaluated as a function of physical properties in the water column such as Mixed Layer Depth (MLD, GODAS model), sea surface temperature (SST, from AVHRR radiometers), photosynthetically-active radiation (PAR, from ocean color data) and euphotic depth (Zeu, from ocean color data). The analysis indicated that the timing, size and duration of the phytoplankton bloom in this area are largely controlled by both meteorological and oceanographic conditions at different scales; this means that it is likely to vary widely from one year to another.  相似文献   

19.
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft.  相似文献   

20.
In this study downward longwave (LW) atmospheric radiation data for the period of 2014–2020 were used to search for short-term periodicities using fast Fourier transform (FFT). Several local peaks in the power spectrum density were found and established. The time series exhibits a series of significant peaks (exceeding the 95% confidence limit), such as at 273 days, 227 days, 200 days, 178 days, 157 days, 110 days, 120 days, 87 days, 73 days, 53–56 days, 35–30 days, 25–27 days, 21 days, 13 days, and 9–10 days.Moreover, cosmic ray data from KACST muon detector and the Oulu neutron monitor, as well as the data for the solar radio flux at 10.7 cm (F10.7 cm), Dst index, and solar wind speed for the same period as the LW data, were used to look for common cyclic variations and periodicities matching those found in the LW radiation. This was done to investigate the possible effect of the solar activity parameters on LW radiation. Several common periodicities were observed in the spectra of all the variables considered, such as 227 days, 154–157 days, 25–27 days, and 21 days. Some of the periodicities found in the LW radiation spectrum can be attributed to the modulation of the cosmic ray intensity by solar activity. Others are attributed to the disturbances in the interplanetary magnetic field. Based on the spectral results, we suggest that the solar signals may directly or indirectly affect the variations of the downward longwave radiation, which in turn may affect climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号