首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the IRI values of Te, Ne, Ti, O+, H+, He+, O2+, and NO+ with AE-C values, obtained from the Goddard Comprehensive Ionosphere Database (GCID), composed of data from the satellites, AE-B, OGO-6, ISIS-2, AE-C, AE-D, and AE-E. O+ - H+ transition levels were derived from the IRI and AE-C altitude profiles. Some discrepancies were found between IRI and the AE-C data. The IRI electron density was found to be about a factor of 2 higher than the data. The H+ composition agreed best among the IRI ions, with an average AE-C/IRI ratio of 1.05. The temperatures of both electrons and ions agreed quite well: the average ratios of AE-C/IRI was found to be .99 for electrons and 1.17 for ions.  相似文献   

2.
Based on data from satellite INTERCOSMOS-BULGARIA-1300, the latitudinal distribution of oxygen and helium ions in the topside ionosphere is discussed for night-time equinox at high solar activity. A comparison with the corresponding IRI-79 distribution is made. The vertical IRI ion composition profile is checked with measurements made with VERTICAL-10 rocket. Some recommendations are made in order to improve the IRI-modelling of the ion composition in the topside ionosphere.  相似文献   

3.
This paper mainly discusses the improvement of performance of the International Reference Ionosphere (IRI) model in estimating the variation of the Vertical Total Electron Content (VTEC) over the mid latitude American regions during the relatively low (2008–2010) and relatively high (2012) solar activity years. This has been conducted employing the VTEC values obtained from the dual frequency ground based Global Positioning System (GPS) receivers located at Mineral Area Community College, MACC (37.85°N, 269.52°W) and Mississippi County Airport, MAIR (36.85°N, 270.64°W), and the latest versions of the IRI online model (IRI 2007, IRI 2012 and IRI 2016). The study mainly focuses to compare the trend of variability of the monthly and seasonal modeled VTEC values (IRI 2007 VTEC, IRI 2012 VTEC and IRI 2016 VTEC) with the corresponding measured VTEC values (GPS VTEC). The overall results show that the IRI VTEC values (almost in all versions of the model) are generally smaller than the GPS VTEC except after about 15:00 UT (09:00 LT) in the December solstice when the Sun shifts to the high solar activity. On the contrary, overestimations of the VTEC values by the model are observed in traversing from the low solar activity (2008) to high solar activity (2012) phase, especially after about 15:00 UT (09::00 LT) with the IRI 2016 version showing the highest. In general, the IRI 2007 and IRI 2012 versions show similar monthly and seasonal underestimations or overestimations showing that the two versions have almost similar performance. The IRI 2016 version is generally better in capturing both the diurnal and arithmetic mean GPS VTEC values with some exceptional months and seasons as compared to those of the IRI 2007 and IRI 2012 versions.  相似文献   

4.
The International Reference Ionosphere (IRI) is a model of the ionosphere, based on experimental data, which has been proposed as a standard ionospheric model. As such, it should be tested extensively to determine its range of validity. One of the ways in which the electron denisty profile given by the IRI, especially above the peak of the F layer, can be tested is to compare calculated and observed values of total electron content (TEC). We have therefore studied the discrepancies between calculated and observed values of TEC recorded at 15 stations covering a wide range of longitudes and latitudes, mainly in the northern hemisphere, and mainly for high levels of solar activity. W have found that the IRI produces reasonably accurate values of TEC at mid and high latitudes, but that it greatly underestimates the daytime values of TEC at low latitudes. We conclude therefore that the daytime electron density profile given by the IRI is reasonably accurate at mid and high latitudes, at least above the peak of the F2 layer. The situation at low latitudes clearly requires more work, and we have suggested two possible lines of study. The generally low discrepancies at night indicate that the night-time electron density profiles given by the IRI correspond fairly closely to the actual profiles.  相似文献   

5.
We used total electron content (TEC) data measured by Faraday rotation technique over Cachoeira Paulista (22.5°S, 45°W), in Brazil, to study the TEC variations with the solar flux at 10.7 cm (F10.7) and to compare the results with the IRI90 predictions. The data were divided into summer, equinox and winter. During the analysed period F10.7 varied from 66 up to 330. Our data shows that the observed TEC at 1600 LT (around the diurnal maximum) and at 0500 LT (around the diurnal minimum) increases with F10.7 until saturation is reached which occurs at F10.7≈210 to 220 for equinox and summer, and at F10.7≈180 for winter months. Comparison with the IRI90 predictions shows that IRI overestimates the TEC at 0500 LT for all solar flux values. At 1600 LT, IRI overestimates the observed TEC for low solar flux but underestimates it for high solar flux values.  相似文献   

6.
7.
I would like to call attention to the fact that the IRI computes erroneously the F2-layer semithickness parameter B0 at southern hemisphere locations. The values of B0, based on northern latitude observations, have a seasonal variation which must be preserved at southern latitudes.The error was found in the course of a study to develop a new ionospheric model for radio-propagation predictions. We observed at southern latitudes major discrepancies between the IRI and the Bradley-Dudeney (1973) model in relation to the F2-layer semithickness. This is estimated in the latter model as the difference between the height of maximum electron concentration (hmF2) and the ionospheric characteristic h′F,F2, the minimum observed virtual height of reflection from the F2-layer, corrected taking into account underlying ionization. The profiles for both models were drawn using the same values of foF2 and hmF2. Then, our analysis served also to test the IRI model with h′F,F2 data obtained from CCIR maps but not used as primary inputs by the IRI.  相似文献   

8.
During 2008, the solar activity is extremely low. The satellite observations show that the ionospheric height and electron density is much lower than the predictions by the international reference ionosphere (IRI) model. In this paper, we compared the slant total electron content (TEC) observed by the COSMIC satellites during 2008 with the IRI model results. It is found that the IRI model with IRI2001 and IRI2001 Cor. topside options will always overestimate the electron density in both lower and higher altitudes. But the rest two topside options (NeQuick, and TTS) tend to overestimate the electron density in the F layer and underestimate it in the topside altitudes. The switch altitude between overestimation and underestimation and the latitude-local time distribution of the model deviation depend on the topside option. The current investigation might be useful for the model improvement as well as data assimilation work based on the IRI model and the LEO TEC data.  相似文献   

9.
Total absorption of hf radio waves at vertical incidence is calculated using the IRI electron density N(h) profiles at a low latitude for low and high solar activities and the calculated values of absorption are compared with the observed values. It is found that the IRI model holds good in this respect only for equinoxial months in years of low solar acitvity; however, it yields much higher values of absorption than observed during years of high solar activity (all seasons). It is suggested that seasonal anomalous variations of gas composition and bottomside thickness of the E-layer may be given due weight in revising the IRI.  相似文献   

10.
Probably the only reliable method of checking an electron density model below 70 km is to calculate from it what would be obtained by VLF or LF propagation over certain paths, and to compare the results with actual observations. This has been done for the IRI at various frequencies from 16 to 70 kHz; the results agree in places but differ substantially elsewhere. Previous models described by the author give satisfactory results and it is suggested that certain features of them might be incorporated with advantage in the IRI. In particular, it is impossible to get agreement with VLF propagation in all seasons by means of a model varying only with solar zenith angle, such as the IRI from 50–90 km.  相似文献   

11.
Comparisons have been made between the percentage of light ions in the upper ionosphere as predicted by the IRI model and as found in incoherent scatter (ICS) measurements at the stations Millstone Hill, Arecibo and Jicamarca. Major discrepancies are observed in both day and night. The IRI values are always considerably larger than the ICS measurements. Theoretical values are calculated as well, assuming chemical equilibrium and using the MSIS neutral density model /1/. In most cases these theoretical values favour the ICS values; only for the daytime ion composition above Millstone Hill has better agreement with the IRI model been found.  相似文献   

12.
A comparison is made between the subpeak electron density profiles, obtained at selected local hours by vertical ionospheric sounding at the ionospheric station at Sofia (42.6°N; 23.3°E) and the IRI profiles for spring, summer, winter and two levels of solar activity (R = 10 and 100). It is demonstrated that the ionospheric profiles above Sofia are in rather good agreement with the values computed with IRI.  相似文献   

13.
The comparison of the IRI model with the foF2 distribution in the equatorial anomaly region obtained by topside sounding onboard the Interkosmos-19 satellite has been carried out. The global distribution of foF2 in terms of LT-maps was constructed by averaging Intercosmos-19 data for summer, winter, and equinox. These maps, in fact, represent an empirical model of the equatorial anomaly for high solar activity F10.7 ~ 200. The comparison is carried out for the latitudinal foF2 profiles in the characteristic longitudinal sectors of 30, 90, 210, 270, and 330°, as well as for the longitudinal variations in foF2 over the equator. The largest difference between the models (up to 60%) for any season was found in the Pacific longitudinal sector of 210°, where there are a few ground-based sounding stations. Considerable discrepancies, however, are sometimes observed in the longitudinal sectors, where there are many ground-based stations, for example, in the European or Indian sector. The discrepancies reach their maximum at 00 LT, since a decay of the equatorial anomaly begins before midnight in the IRI model and after midnight according to the Interkosmos-19 data. The discrepancies are also large in the morning at 06 LT, since in the IRI model, the foF2 growth begins long before sunrise. In the longitudinal variations in foF2 over the equator at noon, according to the satellite data, four harmonics are distinguished in the June solstice and at the equinox, and three harmonics in the December solstice, while in the IRI model only two and one harmonics respectively are revealed. In diurnal variations in foF2 and, accordingly, in the equatorial anomaly intensity, the IRI model does not adequately reproduce even the main, evening extremum.  相似文献   

14.
15.
Data assimilation in conventional meteorological applications uses measurements in conjunction with a physical model. In the case of the ionised region of the upper atmosphere, the ionosphere, assimilation techniques are much less mature. The empirical model known as the International Reference Ionosphere (IRI) could be used to augment data-sparse regions in an ionospheric now-cast and forecast system. In doing so, it is important that it does not introduce systematic biases to the result. Here, the IRI model is compared to ionospheric observations from the Global Positioning System satellites over Europe and North America. Global Positioning System data are processed into hour-to-hour monthly averages of vertical Total Electron Content using a tomographic technique. A period of twelve years, from January 1998 to December 2009, is analysed in order to capture variations over the whole solar cycle. The study shows that the IRI model underestimates Total Electron Content in the daytime at solar maximum by up to 37% compared to the monthly average of GPS tomographic images, with the greatest differences occurring at the equinox. IRI shows good agreement at other times. Errors in TEC are likely due to peak height and density inaccuracies. IRI is therefore a suitable model for specification of monthly averages of Total Electron Content and can be used to initialise a data assimilation process at times away from solar maximum. It may be necessary to correct for systematic deviations from IRI at solar maximum, and to incorporate error estimation into a data assimilation scheme.  相似文献   

16.
Total electron content (TEC) over Tucumán (26.9°S, 294.6°W) measured with Faraday technique during the high solar activity year 1982, is used to check IRI 2001 TEC predictions at the southern crest of the equatorial anomaly region. Comparisons with IRI 90 are also made. The results show that in general IRI overestimates TEC values around the daily minimum and underestimates it the remaining hours. Better predictions are obtained using ground ionosonde measurements as input coefficients in the IRI model. The results suggest that for hours of maximum TEC values the electron density profile is broader than that assumed by the model. The main reason for the disagreement would be the IRI shape of the electron density profile.  相似文献   

17.
18.
TEC values obtained from TOPEX satellite were compared with the International Reference Ionosphere (IRI) 2001 model estimates. The present work also shows results of the IRI model with the option of a new topside electron density distribution (NeQuick model). TOPEX TEC measurements, which include years of high and middle to low solar activity (2000 and 2004), were analyzed by binning the region covered by the satellite (±66°) every five degrees of modip. In general, there is good agreement between IRI predictions and Topex measurements. Cases with large disagreements are observed at low and high latitudes during high solar activity. Comparing the model predictions using the default IRI2001 model and the NeQuick topside option show that the default IRI 2001 version represents the observed data in a more realistic way, but appears to be less reliable at high and low latitudes in some cases.  相似文献   

19.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

20.
We have employed the hourly values of the ionospheric F-region critical frequency (foF2) obtained from Ouagadougou ionosonde, Burkina Faso (geographic coordinates 12° N, 1.8° W) during the interval of 1985–1995 (solar cycle 22) and solar radio flux of 10 cm wavelength (F10.7) to develop a local model (LM) for the African low-latitude station. The model was developed from regression analysis method, using the two-segmented regression analysis. We validated LM with foF2 data from Korhogo observatory, Cote d’Ivorie (geographical coordinates 9.3° N, 5.4° W). LM as well as the International Reference Ionosphere (IRI) agrees well with observations. LM gave some improvement on the IRI-predicted foF2 values at the sunrise (06 LT) at all solar flux levels and in all seasons except June solstice. The performance of the models at the representing the salient features of the equatorial foF2 was presented. Considering daytime and nighttime performances, LM and IRI are comparable in low solar activity (LSA), LM performed better than IRI in moderate solar activity (MSA), while IRI performed better than LM in high solar activity (HSA). CCIR has a root mean square error (r.m.s.e), which is only 0.10 MHz lower than that of LM while LM has r.m.s.e, which is about 0.05 MHz lower than that of URSI. In general, our result shows that performance of IRI, especially the CCIR option of the IRI, is quite comparable with the LM. The improved performance of IRI is a reflection of the numerous contributions of ionospheric physicists in the African region, larger volume of data for the IRI and the diversity of data sources, as well as the successes of the IRI task force activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号