首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impulsive plasma waves (1–9 kHz) with durations less than 100 msec have been found in DE-1 wide-band electric field data (650 Hz – 40 kHz) received at Kashima, Japan. The waves are associated with a strong narrow-band ELF hiss, and were observed at geocentric distances from 3.1 to 4.9 Re (earth's radius) in the low-latitude nightside magnetosphere. Local electron densities and plasmapause locations estimated suggest that the waves were observed outside the nightside plasmapause. The waves are discussed in terms of Landau resonant trapping of magnetospheric electrons by the associated whistler-mode ELF hiss.  相似文献   

2.
本文对GEOS-2卫星S329电子枪实验和S301冷等离子体电子浓度实验所得对流图象进行了综合分析比较.比较是通过Volland半经验模式将对流电场与等离子体层顶相联系的.两种观测都表明对流电场的西旋与Kp有关,并说明Volland模式在一级近似下较好地描述了同步轨道附近的对流情况.两种实验在高地磁活动时等离子体层顶大小方面有矛盾处.这种矛盾的可能原因是高磁扰日时等离子体层顶附近动力过程的复杂性.此外,S329实验所得的对流电场之晨昏不对称性也是值得注意的现象.   相似文献   

3.
We have analysed 28 plasmapause crossings made by the DE1 satellite in the night local time sector (from January to March 1982). Different signatures obtained by the Retarding Ion Mass Spectrometer instrument (RIMS) have been used for this analysis. The observed plasmapause positions (Lpp) have been organized as a function of geomagnetic indices. They are compared with the empirical relationship deduced by Carpenter and Parks (1973) from whistler observations. Moreover, the dependence of Lpp versus Kp has been inferred from model calculation using Kp dependent electric and magnetic fields derived from McIlwain's (1974) E3H electric field model and M2 magnetic field model respectively. Stationary models, as well as time dependent ones, have been used to determine the positions of the plasmapause. The results of the model calculations are compared to the observations.  相似文献   

4.
Two traditional theoretical interpretations of the observed plasmapause are compared, namely, the plasmapause as: 1. The boundary between closed flux tubes that have been in the inner magnetosphere for several days and those that have recently drifted in from the magnetotail or 2. the last closed electric equipotential. Although the two interpretations become equivalent in the case where the electric-field pattern is steady for several days, interpretation 1 seems theoretically more secure for typical magnetospheric conditions, due to the essentially time-dependent nature of the mangetospheric electric field. The results of old theoretical studies of the effects of time variations in the electric-field pattern on the shape of the plasmapause are reviewed briefly. The formulation of the present version of the Rice Convection Model is also reviewed. Preliminary results of recent computations of quiet-time electric fields, carried out with this model, are presented and discussed. Quiet-time thermospheric winds are found to have only minor effects on drift paths of magnetospheric particles.  相似文献   

5.
Various mechanisms have been proposed for explanation of the global magnetospheric modes whose frequency peaks are in the frequency range 1–4 mHz. Recent papers claim: basic characteristics of the 1–4 mHz activity events observed on ground give evidences for an existence of MHD surface mode excited on the Earth magnetopause. The discrete frequencies of such MHD surface wave modes suggest an emergence of standing wave structures along the magnetic field lines lying on the magnetopause. Such discrete frequencies of MHD surface waves on magnetopause however, are not stable, at all. Contrariwise, MHD surface wave modes supported by the two plasma boundaries – the magnetopause and the plasmapause, are in accordance with existing experimental facts: discrete set of almost stable frequencies, field amplitude peaks and positions, energy dissipation, and field distribution from high to low latitudes. Mechanisms of the global magnetospheric mode resonance are pointed out as well as tools for their identification and discrimination.  相似文献   

6.
A model for stochastic acceleration of electrons during geomagnetic storms   总被引:1,自引:0,他引:1  
The theory of resonant diffusion is extended to fully relativistic plasmas, and we examine resonant interactions between electrons and electromagnetic R mode (whistler) and L-mode (EMIC) waves. Resonant diffusion curves are constructed for plasma parameters representative of the Earth's storm time magnetosphere, both inside and outside the plasmapause. EMIC waves can resonate with electrons > 1 MeV, but the energies remain nearly constant along the diffusion curves. Storm-time EMIC waves can induce rapid pitch—angle scattering, but the waves are ineffective for stochastic acceleration of elections. Substantial energy change can occur along the diffusion curves for interactions between resonant electrons and whistler—mode waves, especially in regions of low plasma density. Specifically, whistlers can accelerate electrons from energies near 100 keV to above 1 MeV outside the plasmapause. A model is proposed comprising energy diffusion by whistler-mode chorus and pitch-angle scattering by EMIC waves to account for the gradual acceleration of electrons over the region 4 ≤ L ≤ 6 during the recovery phase of a geomagnetic storm.  相似文献   

7.
Thermal ion composition measurements by the Retarding Ion Mass Spectrometer (RIMS) on Dynamics Explorer-1 have revealed new and intriguing features of the thermal ion distributions in the plasmasphere and plasmapause regions. Some of the interesting new findings include: the presence of intense fluxes of heated and equatorially-trapped light ions within the plasmapause region; the existence of a heavy ion (0+, 0++, N+) ‘torus’ or ‘shell’ in the outer plasmasphere; and the relatively stable nature of the He+/H+ concentration ratio (∼0.2–0.3) within the plasmasphere. The relatively short (∼7.5 hours) orbital period of DE-1 has also allowed improved observations on the formation of the new outer plasmasphere during the recovery of geomagnetic storms. Statistical studies of plasmaspheric density structure and boundaries are beginning to reveal a picture of their relation to other magnetospheric boundaries, such as the inner edge of the electron plasma sheet, and trends in the internal density structure of the plasmasphere.  相似文献   

8.
本文将几个地面和卫星观测结果结合起来给出Volland对流电场模型的实验参数.结果能很好地与GEOS-2卫星所测得的等离子体层顶运动特征、STARE雷达测得的Harang不连续性的运动及近年来探测的磁层电离层电场相吻合.文章指出只要Volland电场模型的参数由实验确定后, 将更有助于磁层和电离层物理的研究.   相似文献   

9.
Pc2 electromagnetic ion cyclotron waves at 0.1 Hz, near the oxygen cyclotron frequency, have been observed by ISEE-1 and -2 between L = 7.6 − 5.8 on an inbound near equatorial pass in the dusk sector. The waves occurred in a thick plasmapause of width ⋍ 1 Re and penetrated ⋍ 1 Re into the plasmasphere. Wave onset was accompanied by significant increases in the thermal (0–100 eV) He+ and the warm (0.1–16 keV/e) O+ and He+ heavy ion populations. Wave polarization is predominantly left-handed with propagation almost parallel to the ambient magnetic field, and the spectral slot and polarization reversal predicted by multicomponent cold plasma propagation theory are identified in the wave data. The results are considered an example of wave-particle interactions occurring during the outer plasmasphere refilling process at the time of the substorm recovery phase.  相似文献   

10.
Our current understanding of the thermal plasma in the atmosphere and its coupling to the ionosphere is reviewed. Existing models appear adequate to explain the gross behavior of the cold thermal plasma, but there remain some vexing problems. Notably, (1) why does the density in flux tubes appear to saturate at lower values than are predicted theoretically, (2) what causes the sunset peak in measured Te, and (3) why does the equatorial plasmapause signature differ in latitude from the ionosphere signatures. The more difficult problem of what happens during the early stages of refilling after a magnetic storm, when the high altitude plasma is likely to be supersonic and collisionless, has received much attention, but the results are not definite. A number of papers have dealt with the interaction of supersonic counterstreaming fluxes and there are now models that can handle the transition from supersonic to subsonic flows although the transition from a collisionless to a collision-dominated plasma remains difficult to deal with.  相似文献   

11.
We investigate the properties of interplanetary inhomogeneities generating long-lasting mid-latitude Pc1, 2 geomagnetic pulsations. The data from the Wind and IMP 8 spacecrafts, and from the Mondy and Borok midlatitude magnetic observatories are used in this study. The pulsations under investigation develop in the maximum and early recovery phase of magnetic storms. The pulsations have amplitudes from a few tens to several hundred pT andlast more than seven hours. A close association of the increase (decrease) in solar wind dynamic pressure (Psw) with the onset or enhancement (attenuation or decay) of these pulsations has been established. Contrary to high-latitude phenomena, there is a distinctive feature of the interplanetary inhomogeneities that are responsible for generation of long-lasting mid-latitude Pc1, 2. It is essential that the effect of the quasi-stationary negative Bz-component of the interplanetary magnetic field on the magnetosphere extends over 4 hours. Only then are the Psw pulses able to excite the above-mentioned type of mid-latitude geomagnetic pulsations. Model calculations show that in the cases under study the plasmapause can form in the vicinity of the magnetic observatory. This implies that the existence of an intense ring current resulting from the enhanced magnetospheric convection is necessary for the Pc1, 2 excitation. Further, the existence of the plasmapause above the observation point (as a waveguide) is necessary for long-lasting Pc1 waves to arrive at the ground.   相似文献   

12.
利用Swarm卫星的高精度(50 Hz)磁场观测数据,对2015年3月16-25日磁暴期间中纬度电离层电磁离子回旋(EMIC)波时空分布特征进行了研究.结果表明:晨侧EMIC波事件数与昏侧大致相当,午前时段明显多于子夜前时段.昏侧EMIC波高发生率与等离子体羽状结构有关,晨侧EMIC波高发生率与太阳风动压增强及稠密冷等...  相似文献   

13.
This paper presents a study of the problem of magnetospheric — ionospheric influences in regions near the plasmapause at different levels of geomagnetic activity. As a basic indicator of these influences, the optical emissions of the SAR-arcs type are examined. We analyze the optical emissions in the region of the main trough of the electron, concentration situated polarly of the SAR-arc region.  相似文献   

14.
Electron pitch angle distributions sharply peaked at 90° pitch angle were first recorded in the energy range 50 eV < E < 500 eV by the GEOS-1 and GEOS-2 spacecraft in 1977/8, from the plasmapause out to geostationary orbit. At the time they were explained as the remnants of pitch angle diffusion driven solely by Electron Cyclotron Harmonic (ECH) waves. Here we use observations by instruments on board the CRRES spacecraft to study these distributions in more detail. The pancake distributions are now seen to develop from injected distributions that are nearly isotropic in velocity space, on a time scale that is greater than 2 hours. The freshly injected distributions are associated with strong ECH and whistler mode waves suggesting that the pancake distributions are likely to be caused by a combination of both wave types. Our results suggest that whistler mode waves play a dominant role in the formation of pancake distributions outside L = 6.0, whereas inside L = 6.0 and, in particular, in the vicinity of the plasmapause, the ECH waves also play a significant role. Consequently both types of waves should be considered in any attempt to explain the diffuse aurora and the variation with L taken into account.  相似文献   

15.
Whistler studies of the plasmapause/plasmasphere are traced from their beginnings during the IGY through the early 1960's, when extensive data from Antarctica became available. Highlights of this period include discovery of the ‘knee’ in the equatorial electron density profile, initial comparisons with results from the Lunik probes, identification of magnetic storm effects, and discovery of the duskside bulge, or region of larger plasmasphere radius, as well as smaller-scale (Δφ ≈ 20°) variations in radius with longitude. In the mid-1960's, whistlers provided the first evidence of cross-L plasma drift patterns in the outer plasmasphere. From a present day perspective, the plasmasphere is seen as a region penetrated, perhaps most efficiently in the dusk sector, by the unsteady component of high latitude electric fields. In the pre-dawn sector, post substorm outward drifts may be an aftereffect of the shielding of the plasmasphere against the steadier components of the substorm electric fields. The available indirect whistler evidence of plasmasphere erosion during large disturbances suggests that erosion occurs primarily in the dusk-premidnight sector.  相似文献   

16.
The whistler-mode chorus waves are one of the most important plasma waves in the Earth’s magnetosphere. Generally, the amplitude of whistler-mode chorus waves prefers to strengthen when the energetic fluxes of anisotropic electrons increase outside the plasmapause. This characteristic is commonly associated with the geomagnetic storms or substorms. However, the relationship between the solar wind dynamic pressure (Psw) and the long-time variation of chorus waves during the quiet period of the geomagnetic activity still needs more detailed investigations. In this paper, based on MMS observations, we present a chorus event just observed in the inner side of magnetopause without obvious geomagnetic storms or substroms. Interestingly, during this time interval, some Psw fluctuations were recorded. Both the amplitudes and frequencies of chorus waves changed as a response to the variation in Psw. It proved that the enhancement of Psw increases the energetic electrons fluxes, which provides free energies for the chorus amplification. Furthermore, the wave growth rates calculated using linear theory increases and the central frequency of the chorus waves shifts to a higher frequency when the Psw enhancement is greater, which are also consistent well with the observations. The results provide a direct evidence that the Psw play an important role in the long-time variation of whistler-mode chorus waves inside the magnetopause.  相似文献   

17.
Measurements of the magnetic field and low energy plasma by the GEOTAIL spacecraft have been used to study the relationship between variations of the plasma velocity and of the magnetic field in the distant (100–200 RE) and middle (40–80 RE) tail. The analysis was carried out separately for the tail lobes and the plasma sheet. It is shown that the absolute values of the magnetic field and plasma velocity, as well as their corresponding components (VX and BX, VY and BY, VZ and BZ), are linearly connected in the tail lobes. In the plasma sheet, however, the plasma velocity and the magnetic field do not seem to be related to one another. The distant plasma sheet seems to be in a regime of turbulence. The diffusion coefficients estimated from our data set of the velocity parameters in the plasma sheet are in good agreement with the theoretical predictions of Antonova and Ovchinnikov (1996, 1999).  相似文献   

18.
Thermal ion measurements from the Retarding Ion Mass Spectrometer (RIMS) on Dynamics Explorer 1 (DE 1) in the night side auroral region were surveyed for evidence of ion acceleration. The RIMS measurements showed evidence for ion acceleration in the 2–10,000 km altitude range, with ion distributions peaked near 90°, and with temperatures of 1 to 10 eV. Two illustrations of the RIMS data for such observations are given here. The conical distributions are found at the low latitude edge of the auroral region, just outside the plasmapause. In the first example, the three major ion species (H+, He+, and O+) show evidence of acceleration. The angular distributions are peaked at different pitch angles, indicating that the different species have been accelerated at different altitudes. The H+ flux is higher than the O+ flux in this first example, in the RIMS energy range (0–50 eV). This is apparently typical of the RIMS observations on the night side. In the second example, only O+ is transversely accelerated.  相似文献   

19.
The average mass of dust per volume in space equals that of the solar wind so that the interplanetary medium should provide an obvious region to study dust plasma interactions. While dust collective behavior is typically not observed in the interplanetary medium, the dust component rather consists of isolated grains screened by and interacting with the plasma. Space measurements have revealed several phenomena possibly resulting from dust plasma interactions, but most of the dust plasma interactions are at present not quantified. Examples are the production of neutrals and pick-up ions from the dust, dust impact generated field variations at spacecraft and magnetic field variations possibly caused by solar wind interacting with dust trails. Since dust particles carry a surface charge, they are exposed to the Lorentz force in the interplanetary magnetic field and for grains of sub-micrometer sizes acceleration can be substantial.  相似文献   

20.
本文从完整的磁流体动力学方程组出发,通过太阳大气中磁力线管根部有限振幅磁场的扰动,研究了非线性磁场的动力学演化。假设初始磁场位形足β<<1的势场,根部磁力线管磁场扰动,驱动等离子体运动,一部分磁能转换为等离子体动能。等离子体压缩运动具有快磁声波的特性。计算结果给出非线性磁场演化的定量关系,可以解释太阳大气中日冕活动过程。也可用于模拟实验室里高β实验装置中的等离子体的持性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号