首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enhanced ionization and electric fields associated with geomagnetic substorms lead to time-varying momentum (ion drag) and heat (Joule dissipation) sources in the high latitude thermosphere. These momentum and heat sources, in turn, cause changes in the structure of the wind, pressure and temperature fields, and, in addition, provide a mechanism for the generation of atmospheric gravity waves. We have developed a model which has been used to simulate, on a spatial scale of tens of kilometers, the response of the high latitude thermosphere to these momentum and heat sources, which constitute a major factor in the coupling between the magnetosphere, the ionosphere and the upper atmosphere. Simulations reported herein indicate that, because the coupling between ions and neutrals is highly dependent on the neutral-ion collision frequency, the response of the neutral atmosphere varies, not only as a function of total ionization, but also as a function of the details of the electron density profile.  相似文献   

2.
3.
Besides gravitational effects, interesting electrodynamical processes could also take place in the vicinity of the rings of Saturn. In part, this is because of the electrostatic charging of the ring particles by the magnetospheric and ionospheric plasma, and in part, the generation of impact plasma by meteoroid bombardment at the ring plane could lead to strong coupling between the rings and the ionosphere via a variety of current systems. The mass transport and angular momentum transfer in association with the ring-ionosphere coupling may cause quite large changes in the ring configuration over the age of the solar system. The presence of the sharp boundary between the B and the C rings perhaps is a good example. To highlight these new developments, we describe several of the electrodynamical mechanisms (with emphasis on their corresponding electric fields and current systems) which have been postulated to be of importance in determining the mass transport of the ring system. Further points are made that, besides mass exchange between the rings and the planetary atmosphere, the mass injection from the rings could also have significant effect on the mass and energy budget of the magnetosphere, maintenance of the E ring, the Titan hydrogen torus as well as aeronomic process in the upper atmosphere of Titan.  相似文献   

4.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

5.
We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out using the model of the entire atmosphere EAGLE. The ionization rates for the considered period were acquired from the AIMOS (Atmospheric Ionization Module Osnabrück) dataset. For numerical experiments, we applied only the proton-induced ionization rates of that period, while all the other model input parameters, including the electron precipitations, corresponded to the quiet conditions. In January 2005, two major solar proton events with different energy spectra and proton fluxes occurred on January 17 and January 20. Since two geomagnetic storms and several sub-storms took place during the considered period, not only solar protons but also less energetic magnetospheric protons contributed to the calculated ionization rates. Despite the relative transparency of the thermosphere for high-energy protons, an ionospheric response to the SPE and proton precipitation from the magnetotail was obtained in numerical experiments. In the ionospheric E layer, the maximum increase in the electron concentration is localized at high latitudes, and at heights of the ionospheric F2 layer, the positive perturbations were formed in the near-equatorial region. An analysis of the model-derived results showed that changes in the ionospheric F2 layer were caused by a change in the neutral composition of the thermosphere. We found that in the recovery phase after both solar proton events and the enhancement of magnetospheric proton precipitations associated with geomagnetic disturbances, the TEC and electron density in the F region and in topside ionosphere/plasmasphere increase at low- and mid-latitudes due to an enhancement of atomic oxygen concentration. Our results demonstrate an important role of magnetospheric protons in the formation of negative F-region ionospheric storms. According to our results, the topside ionosphere/plasmasphere and bottom-side ionosphere can react to solar and magnetospheric protons both with the same sign of disturbances or in different way. The same statement is true for TEC and foF2 disturbances. Different disturbances of foF2 and TEC at high and low latitudes can be explained by topside electron temperature disturbances.  相似文献   

6.
The Voyager 1 measurements made during the Titan flyby reveal that Saturn's rotating magnetospheric plasma interacts directly with Titan's neutral atmosphere and ionosphere. This results from the lack of an intrinsic magnetic field at Titan. The interaction induces a magnetosphere which deflects the flowing plasma around Titan and forms a plasma wake downstream. Within the tail of the induced magnetosphere, ions of ionospheric origin flow away from Titan. Just outside Titan's magnetosphere, a substantial ion-exosphere forms from an extensive hydrogen-nitrogen exosphere. The exospheric ions are picked up and carried downstream into the wake by the plasma flowing around Titan. Mass loading produced by the addition of exospheric ions slows the wake plasma down considerably in the vicinity of the magnetopause.  相似文献   

7.
In the decade and a half since the initial discovery that the Earth's own ionosphere could at times contribute measurably to the hot plasma in the magnetosphere we have made significant progress in both our knowledge and understanding of this connection. We now know that ions of ionospheric origin are found in all major regions of the magnetosphere and at its boundaries. The source region in the ionosphere and the acceleration and transport processes involved in coupling the cold ionospheric plasma to the hot magnetospheric plasma are complex and variable. We now have a good understanding of the large scale morphology of the ionospheric outflow and its distribution throughout the magnetosphere and progress is being made in the understanding of the fundamental physical processes involved. In this paper we concentrate on the large scale morphology and our understanding of the sources for ionospheric ions found in various regions of the magnetosphere and their transport.  相似文献   

8.
极区从电离层到磁层的上行粒子流探测研究是空间天气建模中的重要问题,其起源和加速机制是磁层-电离层-热层耦合小卫星星座计划的主要科学目标. 磁层-电离层-热层耦合小卫星星座计划拟定由两颗磁层星和两颗电离层/热层星组成星座对极区进行联合观测. 其中,上行粒子源区附近的就位探测是电离层-热层耦合机制研究的重点,也是电离层/热层星轨道设计的关键. 根据相关空间探测计划和卫星观测结果,通过比较圆轨道和椭圆轨道两种方案,确定电离层/热层星采用椭圆轨道.   相似文献   

9.
TREND2004, the third IAGA/ICMA Workshop Long Term Changes and Trends in the Atmosphere, presented a lot of new information and in some way summarized progress over the last few years in the field of long-term trends in the atmosphere–ionosphere system with emphasis on the middle atmosphere and ionosphere. The paper briefly summarizes the results of the Workshop with focus on the mesosphere, ionosphere and thermosphere and presents some new findings. Progress in recent years was substantial in trends in thermospheric density, mesospheric and mesopause region temperature, and in the lower ionosphere (ionized component). On the other hand, principal contradictions remain in trends in the F2 region of the ionosphere, particularly in interpretation of the observed trends.  相似文献   

10.
Until recently the only known large-scale effects of man on geomagnetic activity and pulsations were those produced by high-altitude nuclear explosions. However, in just the last few years, measurements have indicated that changes can also be produced by (1) moderately-powered pulsed HF radio (1–20 MHz) transmissions into the ionosphere, (2) high-powered pulsed VLF radio transmissions (3–15 kHz) into the magnetosphere, and (3) by the ULF magnetic noise (frequencies < 5 Hz) from modern dc electric powered mass transit systems. Further, experiments reported by U.S. and Soviet scientists support the suggestion that ULF geomagnetic changes in the ionosphere and magnetosphere can be generated by the passage of a large ULF current around a peninsula in the sea. As a result of these experimental activities, it appears that controlled experiments using artificially generated ULF signals in the ionized upper atmosphere are now feasible. Finally, the report of a “weekend effect” in geomagnetic activity (as measured by the geomagnetic activity index Ap, for example) suggests that man's activities may already have been subtly influencing geomagnetic activity for many years, possibly because of the radiation from electric power distribution systems into the magnetosphere.  相似文献   

11.
The Mariner 10 observations of Mercury's miniature magnetosphere collected during its close encounters in 1974 and 1975 are reviewed. Subsequent data analysis, re-interpretation and theoretical modeling, often influenced by new results obtained regarding the Earth's magnetosphere, have greatly expanded our impressions of the structure and dynamics of this small magnetosphere. Of special interest are the Earth-based telescopic images of this planet's tenuous atmosphere that show great variability on time scales of tens of hours to days. Our understanding of the implied close linkage between the sputtering of neutrals into the atmosphere due to solar wind and magnetospheric ions impacting the regolith and the resultant mass loading of the magnetosphere by heavy planetary ions is quite limited due to the dearth of experimental data. However, the influence of heavy ions of planetary origin (O+, Na+, K+, Ca+ and others as yet undetected) on such basic magnetospheric processes as wave propagation, convection, and reconnection remain to be discovered by future missions. The electrodynamic aspects of the coupling between the solar wind, magnetosphere and planet are also very poorly known due to the limited nature of the measurements returned by Mariner 10 and our lack of experience with a magnetosphere that is rooted in a regolith as opposed to an ionosphere. The review concludes with a brief summary of major unsolved questions concerning this very small, yet potentially complex magnetosphere.  相似文献   

12.
空间物理学是人类进入空间时代后迅速发展起来的一门新兴的多学科交叉的前沿基础学科。其将太阳和太阳风控制的日球层空间作为一个系统,研究太阳/太阳风与行星/彗星的上层大气、电离层、磁层乃至星际介质之间的相互作用。空间物理学从本质上讲是一门实验科学,空间物理探测是空间物理学发展的基础。进入新世纪,随着空间基础设施和人类高技术活动的日益频繁,空间物理学进入新的发展阶段,强调科学与应用的密切结合。近年来,空间物理学取得了一系列重要进展。本文对接国家自然科学基金委地球科学部“宜居地球-地球系统科学”的顶层战略设计,梳理总结近年来空间物理各学科发展动态和趋势,凝练中国空间物理学未来发展的重点领域,优化学科布局,推进空间物理各学科的高质量发展。  相似文献   

13.
This paper presents a new calculation of neutral gas heating by precipitating auroral electrons. It is found that the heating rate of the neutral gas is significantly lower than previous determinations below 200 km altitude. The neutral gas heating arises from the many exothermic chemical reactions that take place from the ions and excited species created by the energetic electrons. The calculations show that less than half the energy initially deposited ends up heating the neutral gases. The rest is radiated or lost in the dissociation of O2 because the O atoms do not recombine in the thermosphere. This paper also presents a new way of calculating the heating rate per ionization that can be used for efficient determination of the overall neutral gas heating for global thermosphere models. The heating rates are relatively insensitive to the neutral atmosphere when plotted against pressure rather than altitude coordinates. At high altitudes, the heating rates are sensitive to the thermal electron density and long-lived species. The calculations were performed with the Field Line Interhemispheric Plasma (FLIP) model using a 2-stream auroral electron precipitation model. The heating rate calculations in this paper differ from previous heating rate calculations in the treatment of backscattered electrons to produce better agreement with observed flux spectra. This paper shows that more realistic model auroral electron spectra can be obtained by reflecting the up going flux back to the ionosphere at the upper boundary of the model. In this case, the neutral gas heating rates are 20%–25% higher than when the backscattered flux escapes from the ionosphere.  相似文献   

14.
15.
A future Chinese mission is introduced to study the coupling between magnetosphere, ionosphere and thermosphere, i.e. the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation (MIT). The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere. The constellation is planning to be composed of four small satellites; each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude. The payloads onboard include particle detectors, electromagnetic payloads, auroral imagers and neutral atom imagers. With these payloads, the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes. Currently the orbits have been determined and prototypes of some have also been completed. Competition for next phase selection is scheduled in late 2015.   相似文献   

16.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric re-search:(1) ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2) mid-and low-latitude ionospheric clima-tology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3) ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4) ionospheric diagnostics(observation,modeling,and prediction).  相似文献   

17.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric research:(1)ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2)mid-and low-latitude ionospheric climatology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3)ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4)ionospheric diagnostics(observation,modeling,and prediction).  相似文献   

18.
本文将几个地面和卫星观测结果结合起来给出Volland对流电场模型的实验参数.结果能很好地与GEOS-2卫星所测得的等离子体层顶运动特征、STARE雷达测得的Harang不连续性的运动及近年来探测的磁层电离层电场相吻合.文章指出只要Volland电场模型的参数由实验确定后, 将更有助于磁层和电离层物理的研究.   相似文献   

19.
Measurements of the bulk flow of plasma in the outer magnetosphere were first made a little over a decade ago with Los Alamos instruments on the Vela satellites. During the intervening years, as flow measurements have been made with improved instruments and by other satellites they have come to play a crucial role in the development of our understanding of the structure and dynamics of the magnetosphere. For example, they were the means of discovery of the magnetosphere's boundary layer and of plasma vortices within the plasma sheet. They were the essential ingredient in the identification of signatures of magnetic reconnection at the magnetopause. And they were indispensible in clarifying the complex phenomena in the magnetotail accompanying substorms and in showing that these phenomena are consistent with a substorm model involving magnetic reconnection at a near-earth neutral line. Most recently, magnetotail plasma flow measurements by the ISEE-3 satellite at distances as great as 230 RE have been instrumental in fixing the average location of the “distant” neutral line at ~ 60 to 120 RE and in identifying plasmoids (i.e., severed sections of the plasma sheet), released during substorms and escaping down-tail. This paper reviews the features of magnetotail plasma flow, describes the most recent observations, and discusses their implications for magnetospheric physics.  相似文献   

20.
Ion flows from the ionosphere into the magnetosphere fall into two main categories: cold (<1eV), “classical” polar wind and heated (>1eV), suprathermal ion outflows. A wealth of new understanding of these outflows has resulted from the Dynamics Explorer Mission. This review describes both the confirmation of the predicted classical polar wind as well as the revelation of a great variety of low-energy suprathermal outflows: the cleft ion fountain, the nightside auroral fountaion (X-events, toroids and field-aligned flows) and polar cap outflows. The main emphasis is placed on flows at energies below about 50eV, observed by the Retarding Ion Mass Spectrometer (RIMS) on board the Dynamics Explorer 1 satellite; limited comparisons are made with results from other instruments which sample different energy ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号