首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Numerical modelling is used to search for the most suitable conditions, with the object of determining the atmospheric turbidity (aerosol optical depth) from upward emerging spectral radiances in cloudfree pixels over water surfaces. The most suitable conditions are those where the influence of the turbidity on the radiance most strongly outweighs that of the other optically acting constituents. Since the actual values of these constituents of atmosphere and surface are usually known only within certain limits, using the most suitable conditions minimizes the uncertainty in the turbidity to be derived from satellite measurements. As a result, favorable zenith angles of the satellite and favorable wavelengths are presented for an atmosphere with maritime aerosols with and without Saharan dust. The results represent an advance on a paper published by the authors in 1981 [1].  相似文献   

2.
In simple energy balance climate models all physical and dynamical processes are parameterized in terms of the single unknown variable: the surface temperature. To simulate the ice-albedo feedback, the surface albedo is usually assumed to be a function of surface temperature. But to compute the absorbed solar radiation in such models one requires the top-of-the atmosphere albedo: the planetary albedo. In the present study, a simple linear relationship is derived between planetary albedo and surface albedo for the case of clear skies. The relationship is based upon a regression equation derived from simulations and has a standard error of estimate of 0.028. The estimation of planetary albedo from surface albedo is checked by comparing zonally averaged clear-sky planetary albedos, estimated from zonally averaged surface albedos, to satellite determinations of zonally averaged minimum albedos for monthly mean conditions. The minimum albedos are assumed to be representative of the clear-sky planetary albedos. The results show root-mean square differences of 0.05 between the estimated clear-sky planetary albedos and the minimum albedos.More accurate relationships can be obtained if one uses an additional parameter - the solar zenith angle. In this case, the standard errors of estimate are reduced to 0.017 for a zenith angle of 0°, 0.018 for a zenith angle of 60° and 0.021 for a zenith angle of 85°.  相似文献   

3.
At the estimation of the sensitivity three variable parameters must be taken into account: cloud amount, cloud albedo and cloud-top height. Cloud albedo is considered to be a parameter that varies according to a given formula. The effective cloud amount and outgoing longwave flux from cloudy atmosphere have been computed on the basis of the satellite measured planetary albedo and the outgoing flux data, using additional information about planetary albedo and the outgoing longwave flux in clear-sky conditions. The latter quantities have been computed from the mean contemporary climatic data. The estimation of the sensitivity is carried out in two cases: if the effective cloud amount and cloud-top height variations are independent or not. The corresponding statistical tests are presented.  相似文献   

4.
介绍利用青海湖辐射校正场对FY-1C、FY2B气象卫星热红外通道进行在轨辐射定标,先用CE312野外热红外辐射计在水面测量水表辐亮度,再经大气订正传递到卫星入瞳处,大气订正包括大气吸收削弱和大气产生热发射影响,这两部分对卫星信号的贡献通过辐射传输模式MODTRAN37计算出来,同时进行CE312与卫星通道光谱响应匹配,最终得到卫星入瞳处的表观辐亮度,这个辐亮度与卫星通道的计数值得到该通道绝对定标系数。我们对两颗卫星进行了多次定标,结果表明利用青海湖进行的在轨定标与星上定标系数相差5%左右,相当于3K的亮温差。  相似文献   

5.
A nonlinear mixture model for the interpretation of mixed pixels in remote sensing satellite images is proposed. The proposed model is a Monte Carlo ray-tracing model that takes into account interactions among the ground cover materials (multiple reflections among the materials on the surface). The proposed model also takes into account topographic features (slope) of the ground surface. As an example, Top of the Atmosphere (TOA) radiance of mixed pixels of forested areas which are composed of grasses and trees are simulated with the proposed model and compared to actual remote sensing satellite data of ASTER/VNIR over these forested areas. It was found that the influence due to multiple scattering interactions between trees depends on the tree distance and ranges from 8% to 10%. It is also found that the proposed model is useful to interpret mixed pixels. Namely, it is suggested that actual reflectance of the trees is higher than apparent reflectance that is calculated with the satellite data. Also it is suggested that it is possible to estimate forest parameters such as tree distance, tree shape.  相似文献   

6.
7.
Observational data to effectively evaluate weather effects, which accumulate into current climate status, are available for affluent nations but often are inadequate elsewhere. Data acquired by satellite sensors in the visible-near infrared portion of the reflected solar energy spectrum have been accumulated daily since 1965 and for the earth's emitted radiance in the 11000 nm window since 1972. With the advent of the TIROS-N satellite in 1978, the solar reflected energy has been sensed in two separate channels and beginning with NOAA-6, the second vehicle of the TIROS-N family, these two channels became complementary rather than overlapping. This feature makes vegetative monitoring possible and now is being exploited to provide daily experimental products. These global vegetative index (GVI) arrays have been used to observe and map the effects of droughts, floods, adverse winds and thermal stresses on the global arable lands. These data and the related sea surface temperatures, both derived from satellite data, provide realistic measures of the global climate and can assist climatic forecasting.  相似文献   

8.
The present paper discusses the use of the transformed Eulerian (or “residual”) mean-flow formulation, the Eliassen-Palm flux, and Ertel's potential vorticity to provide an increased understanding of wave, mean-flow interactions, and constituent transport processes in the stratosphere. Temperature and ozone data retrieved from radiance profiles obtained by the LIMS instrument on the Nimbus 7 satellite are utilized in conjunction with these theoretical concepts for the interpretation of phenomena that occurred during the major and minor warmings of January-February 1979. The results illustrate the insight provided by these concepts and demonstrate that useful diagnostic quantities can be derived from global satellite temperature fields.  相似文献   

9.
Measurements of the spectral radiance of the earth's atmosphere from satellites can be related to the vertical structures of temperature and humidity. Derived profiles of these quantities are compared with radiosonde and rocketsonde observations, as well as with horizontal and vertical cross-sections of the atmosphere. In some regions of the atmosphere, particularly where large gradients are found, significant differences occur. A method for overcoming these by use of Typical Shape Functions is discussed. Transmittances computed from theory require modifications which are not well defined, and radiances measured from some satellite instruments disagree with computed values in ways which suggest calibration or instrument problems.  相似文献   

10.
The determination of the cloud top height by means of satelliteborne IR-radiometers requires the conversion of the measured radiance to an equivalent blackbody temperature and the assignment of this temperature to a geometrical height. The latter is associated with errors which add up easily to several kilometers. DFVLR did a case study to compare satellite derived cloud top heights with those from airborne Lidar measurements. The difference of the radiosonde temperature from the standard temperature profile results in a 1.8 km difference in cloud top height. The achievable accuracy using actual radiosonde temperatures is ± 0.4 km for optical thick clouds and much less for optical thin clouds.  相似文献   

11.
The northern Sinai is a sandy semi-desert. Severe overgrazing and other anthropogenic pressures contribute to an extremely sparse vegetative cover. A 6×6 km area was fenced off in the summer of 1974, constituting an exclosure from the grazing herds and from harvesting of plants for firewood. The vegetation in this exclosure recovered rapidly. In this study, radiances and surface temperatures of the vegetated exclosure and of the surrounding anthropogenically impacted terrain were monitored for the period March–September 1981, using NOAA-6 satellite. This satellite carries the Advanced Very High Resolution Radiometer (AVHRR) that measures visible and solar infrared radiances and also radiation temperatures at 11 μm band. In the digital images, the exclosure forms an easily recognized square, darker in the visible and solar infrared AVHRR channels than the surroundings. We concentrated on the corner in which there was no anthropogenic activity. Based on the ratio of the radiance over the exclosure to that over the surrounding terrain, the protrusions parameter s (vertical projection of the protrusions per unit area) has been estimated. The average value of s for the various satellite passes is 0.20 as measured in the visible channel and 0.18 as measured in the solar infrared. The radiation temperatures of the exclosure and of the surrounding terrain were analyzed. The radiation temperatures of the vegetated exclosure (sand with protruding bushes) are higher (by up to 2.5°K) than those of the surrounding terrain (that can be approximately regarded as bare sand). It is concluded that in an arid climate, under the semi-dormant conditions of vegetation (which prevail at all times except for the desert-bloom period, after a rain) the evapotranspiration is low, so that its effect on the surface temperatures is very small. Under these conditions, the surface temperatures are controlled by the surface albedo and the air flow at the surface.  相似文献   

12.
Because space-borne radiometers do not measure the Earth’s outgoing fluxes directly, angular distribution models (ADMs) are required to relate actual radiance measurement to flux at given solar angle, satellite-viewing geometries, surface, and atmospheric conditions. The conversion of one footprint broad-band radiance into the corresponding flux requires therefore one to first characterize each footprint in terms of surface type and cloud cover properties to properly select the adequate ADM.

A snow (and sea-ice) retrieval technique based on spectral measurements from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8 is presented. It has been developed to improve the scene identification and thus the ADM selection in the near-real time processing of the Geostationary Earth Radiation Budget (GERB) data at the Royal Meteorological Institute of Belgium. The improvement in the GERB short wave flux estimations over snow covered scene types resulting from angular conversion using dedicated snow ADMs (e.g., empirical snow ADMs and/or pre-computed theoretical snow ADM) instead of empirical snow-free ADMs is discussed.  相似文献   


13.
The International Satellite Cloud Climatology Project (ISCCP) will provide a uniform global climatology of satellite-measured radiances and derive a climatology of cloud radiative properties from these radiances. For this purpose, a pilot study of cloud analysis algorithms was initiated to define a state-of-the-art algorithm for ISCCP. This study compared the results of applying the nine different algorithms to the same satellite radiance data. The comparison allowed for a sharper understanding of the process of detecting clouds and shows that all algorithms can be improved by better information about clear sky radiance values (essentially equivalent to surface property information) and by better understanding of cloud size distribution variations. The dependence of all methods on cloud size distribution led to selection of an advanced bispectral threshold technique for ISCCP because this method is currently better understood and more developed. Further research on cloud algorithms is clearly suggested by these results.  相似文献   

14.
The effects of snow and cloud cover on planetary albedo are examined using observations from NOAA polar orbiting satellites. Reflected radiation was measured in the visible range (0.5 – 0.7 μm). Planetary albedos resulting from different cloud/snow cover conditions are compared using Northern Hemisphere snow cover maps, surface weather charts, satellite photos and data on land surface types. None of the cases studied show that concurrent cloud and snow cover produces significantly different planetary albedos than cloud cover alone. Cloud cover alone is found to yield higher planetary albedos than snow cover alone; the difference being greatest over forested areas. With and without snow cover present, clear-sky planetary albedos over farming and grazing lands (snow(0.45), no snow(0.15)) are found to be significantly higher than those over forested regions (snow(0.33), no snow(0.11)). Variations in satellite zenith angle are not found to produce significant effects in most cases studied.  相似文献   

15.
The Earth’s albedo is one of the least studied fundamental climate parameters. The albedo is a bi-directional variable, and there is a high degree of anisotropy in the light reflected from a given terrestrial surface. However, simultaneously observing from all points on Earth at all reflecting angles is a practical impossibility. Therefore, all measurements from which albedo can be inferred require assumptions and/or modeling to derive a good estimate. Nowadays, albedo measurements are taken regularly either from low Earth orbit satellite platforms or from ground-based measurements of the earthshine from the dark side of the Moon. But the results from these different measurements are not in satisfactory agreement. Clearly, the availability of different albedo databases and their inter-comparisons can help to constrain the assumptions necessary to reduce the uncertainty of the albedo estimates. In recent years, there has been a renewed interest in the development of robotic and manned exploration missions to the Moon. Returning to the Moon will enable diverse exploration and scientific opportunities. Here we discuss the possibility of a lunar-based Earth radiation budget monitoring experiment, the Lunar Terrestrial Observatory, and evaluate its scientific and practical advantages compared to the other, more standard, observing platforms. We conclude that a lunar-based terrestrial observatory can enable advances in Earth sciences, complementary to the present efforts, and to our understanding of the Earth’s climate.  相似文献   

16.
The atmospheric effect on the radiance of sunlight scattered from the Earth-atmosphere system is greatly dependent on the surface reflectance pattern, the contrast between adjacent fields, and the optical properties of the atmosphere. In addition, the atmospheric effect is described by the range and magnitude of the adjacency effects, the atmospheric modulation transfer function, and the apparent spatial resolution of remotely sensed imagery. This paper discusses the atmospheric effect on classification of surface features and shows that surface nonuniformity can be used for developing procedures to remove the atmospheric effect from the satellite imagery.  相似文献   

17.
A Monte Carlo simulation program has been used to compute the signal contribution of surface elements outside the field of view of a satellite borne sensor in both the visible and infrared spectra for realistic atmospheric models. For azimuthally symmetric reflection the effect of an arbitrary surface albedo pattern can be represented by two spread functions, namely, 1) the ground-satellite spread function, and 2) the ground-ground spread function. Examples of computed spread functions are shown together with their Fourier correspondents, the modulation transfer functions. It has been shown that the central portions of the line spread functions behave as the inverse distance while the point spread functions always possess a region behaving as the inverse square of the radial distance. The median distance is shown to relate to the weighted molecular and aerosol scale height, and for large distances the spread functions become independent of the aerosol loading.  相似文献   

18.
The paper deals with a new method for simultaneous determination of cloud top height and effective cloud cover, using infrared radiance data of satellite-borne instruments. These cloud properties derived from the Selective Chopper Radiometer on the Nimbus 5 satellite are compared with nearly simultaneous observations by radiosondes and with satellite images. Encouraging results for Central-Europe during January, April, July, August and October 1974, as well as numerical simulations indicate that the method proposed here, would be useful also for global application. Another advantage of the described procedure are the small amount of computing time, and that no other data are required than 3 of infrared channel values, for each sounded spot.  相似文献   

19.
基于目标的全色TDICCD 空间相机信噪比分析   总被引:1,自引:0,他引:1  
TDICCD 是近几年发展起来的一种新型光电传感器, 作为焦平面器件已广泛应用于空间相机的设计和制造. 本文分析了待观测目标太阳高度角及亮度的影响因素, 建立了光能量从待观测目标到空间相机入瞳的亮度传递数学模型, 提出了一种基于目标的全色TDICCD 空间相机信噪比快速预估计算方法. 以模拟极轨卫星所携带的TDICCD 相机为例进行了预估分析. 结果显示, 此模拟北纬20°待观测目标全年星下点太阳高度角范围为41.5°~76.7°, F 数为15 的TDICCD 相机可以获得的最大信噪比大于40dB. 本文的推导可用于TDICCD 空间相机的预研和总体设计, 同时达到验证卫星任务规划与轨道设计合理性的目的.   相似文献   

20.
An approximate method has been described to determine optical properties of the ocean surface from the reflected short-wave radiance at the top of the atmosphere. The non-scattered and singly scattered components of the radiation field have been taken into account exactly, the multiply scattered components - approximately. The calculations for a real atmospheric model have been compared with the results of an exact method for solving the radiation transfer equation.On the basis of the elaborated algorithm the sensitivity of the value of the remotely sensed spectral albedo of the ocean to the variations in optical thickness, single scattering albedo and aerosol phase function has been described as well as the influence of vertical inhomogeneity of the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号