首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
In order to improve its representation of the dependence on time and space of the ionospheric parameters, the International Reference Ionosphere ought to take account of realistic sunrise and sunset conditions in the upper atmosphere. Such input is needed for quite a few parameters for which only day and night values were taken as input in the present IRI. Of the 24 hours of a day, true nighttime comprises a fraction of 37% at an altitude of 300 km and only 26% at 1000 km. In order to demarcate the day/night/day transition periods, the present IRI proposes solar zenith angles of 98° to 120°, depending on the altitude.Electron density profiles, obtained during these periods, have been studied with two data sources: 10 vertical-incidence sounding data observed during the meridional voyages of the research vessel “Akademik Korolev” in the Pacific Ocean; 2° data observed at the South Pole. It is shown that the height of the turning point in the sub-peak F2-layer profile and also the corresponding minimum scale height appear to be independent of latitude, season and index of geomagnetic activity. A method is discussed by which the IRI electron density profiles might be improved, in particular during these hours.  相似文献   

3.
During the years of high solar activity (1979–1980) simultaneous soundings of the ionosphere were made by the Bulgarian ground stations at Sofia and Michurin and by the satellite Interkosmos 19. The N(h) profiles for the ground stations were computed in association with IZMIRAN, Moscow and those for the satellite by SIB-IZMIRAN.During some of the satellite transit orbits the electron densities at the maximum of the F2 layer coincide precisely with those obtained from ground ionograms. In other cases differences were observed, perhaps because of the differences in time; the ionospheric stations at Sofia and Michurin worked on the ordinary 15-minute regime.  相似文献   

4.
The deviation of the IRI estimates of the monthly mean foF2 in the low mid latitude of 95°E–130°E longitude sector is investigated using simultaneous ground measurements at four stations during 2010–2014. The stations form two conjugate pairs of the same geo-magnetic latitude at two fixed longitudes enabling direct longitudinal and hemispheric comparison. The temporal, spatial, seasonal and solar activity variations of the deviations are discussed with reference to the longitudinal density variation in the transition region between low and midlatitudes. Cases of underestimation/overestimation as well as good estimate are noted. Underestimation (overestimation) in the daytime and overestimation (underestimation) in the nighttime of 95°E (130°E) are common. The longitudinal difference in the measurements suggests negative (positive) foF2 gradient from west to east in daytime (nighttime). In contrast, the IRI predicts flatter or increasing longitudinal profiles from 95°E to 130°E. The local time and longitudinal variation of the IRI deviations can be attributed to the combined role of the longitudinal EIA structure as well as midlatitude zonal wind-magnetic declination effect. The station/season independent deviations relate the role of solar activity representation in the IRI. These deviations may be attributed to the weak IRI response to rapid solar flux fluctuations.  相似文献   

5.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

6.
电离层薄层高度对电离层模型化的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
利用IRI2012模型分析了电离层薄层高度的时空变化规律,提出了基于应用中STEC的电离层改正误差分析理论,分析了电离层薄层高度变化的相关影响.结果表明,电离层薄层高度变化对电离层穿刺点位置、投影映射函数值、电离层建模结果、电离层模型精化和电离层模型精度评估结果的影响较大.高度截止角为10°时,电离层薄层高度变化导致电离层穿刺点的经纬度差异最大可达3.2°,投影映射函数最高可引入约15.46%的误差,电离层建模结果差异和建模实用误差最高分别达9.71%,3.64%,采用不同薄层高度数据的电离层模型参数拟合和模型精化结果最大可引入约9.26%的误差,采用不同电离层薄层高度数据进行模型精度评定时最大可引入约9.62%的误差.根据这些研究结果可知:在实际应用中应采用电离层薄层高度模型,并选取较大的卫星高度截止角来减小薄层高度变化引入的误差;采用固定高度时,区域电离层建模采用与实际电离层薄层一致的固定高度;进行精度评估时,参考数据的电离层薄层高度与需要精度评估的电离层模型薄层高度相等.   相似文献   

7.
In this paper, combined bottom- and topside ionospheric N(h)-profiles are presented for the Bulgarian region. The profiles were constructed using ground (ionospheric observatories Sofia and Michurin) and satellite (Interkosmos-19) observations /1/.The observatories make quarter-hourly observations; in order to connect bottom and upper parts of the N(h) profile, we selected satellite orbits passing rather near to the observatory (zenith distance lsss than 100 km). Thus the time difference between ground station and satellite measurement was never more than 7.5 min.  相似文献   

8.
This paper presents an novel extreme learning machine (ELM)-based prediction model for the ionospheric propagation factor M(3000)F2 at Darwin station (12.4°S, 131.5°E; −44.5°dip) in Australia. The proposed ELM model is trained with hourly daily values of M(3000)F2 from the period 1998–2014 except 2001 and 2009. The hourly daily values of 2001 (high solar activity) and 2009 (low solar activity) are used for validating the prediction accuracy. The proposed ELM for modeling M(3000)F2 can achieve faster training process and similar testing accuracy compared with backward propagation neural network (BPNN). In addition, the performance of the ELM is verified by comparing the predicted values of M(3000)F2 with observed values and the international reference ionosphere (IRI −2016) model predicted values. Based on the error differences (the root mean square error (RMSE) and the M(3000)F2 percentage improvement values M(3000)F2IMP(%)), the result demonstrates the effectiveness of the ELM model compared with the IRI-2016 model at hourly, daily, monthly, and yearly in high (2001) and low (2009) solar activity years. The ELM also shows good agreement with observations compared with the IRI during disturbed magnetic activity.  相似文献   

9.
10.
On behalf of an URSI Working Group 3 initiated study (VIM), three ionospheric models, IRI, PL/PRISM and FLIP, are compared with electron density profiles derived from ionograms Millstone Hill. Four months of data in 1989/90 were analyzed. For most of the time, N(h) profiles were available every 15 minutes providing a good statistical database for the evaluation of the ionospheric models in terms of diurnal and seasonal variations.  相似文献   

11.
After inversion, N(h) profiles obtained from ionograms that had been recorded during high solar activity at two mid-latitutde stations have been compared with those derived from IRI90 and DGR ionospheric models. A small data set has been selected such that both geomagnetically quiet and disturbed conditions are represented.  相似文献   

12.
北斗卫星导航信号采用三个频点工作,可以利用伪距双频组差方法解算电离层电子含量,为实时监视中国区域电离层变化提供新的技术手段.中国中低纬度处于电离层赤道异常变化区,在北纬20°±5°区域时常发生较大梯度的电离层变化.利用北斗实时多频伪距和相位观测数据,采用相位平滑伪距方法计算电离层穿刺点电子含量,分析通过北斗系统GEO卫星监测的电离层周日变化特性;采用多面函数方法拟合中国区域1°×1°分辨率的电离层延迟量,每5min绘制一幅中国区域电离层图,观测区域所有电离层穿刺点拟合残差RMS为2.778TECU;分析北斗系统实时监测中国区域电离层异常情况,当发生电离层异常变化时,相邻两天的VTEC(Vertical Total Electronic Content)峰值相差约60TECU.   相似文献   

13.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

14.
I would like to call attention to the fact that the IRI computes erroneously the F2-layer semithickness parameter B0 at southern hemisphere locations. The values of B0, based on northern latitude observations, have a seasonal variation which must be preserved at southern latitudes.The error was found in the course of a study to develop a new ionospheric model for radio-propagation predictions. We observed at southern latitudes major discrepancies between the IRI and the Bradley-Dudeney (1973) model in relation to the F2-layer semithickness. This is estimated in the latter model as the difference between the height of maximum electron concentration (hmF2) and the ionospheric characteristic h′F,F2, the minimum observed virtual height of reflection from the F2-layer, corrected taking into account underlying ionization. The profiles for both models were drawn using the same values of foF2 and hmF2. Then, our analysis served also to test the IRI model with h′F,F2 data obtained from CCIR maps but not used as primary inputs by the IRI.  相似文献   

15.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

16.
The International Reference Ionosphere (IRI) is a model of the ionosphere, based on experimental data, which has been proposed as a standard ionospheric model. As such, it should be tested extensively to determine its range of validity. One of the ways in which the electron denisty profile given by the IRI, especially above the peak of the F layer, can be tested is to compare calculated and observed values of total electron content (TEC). We have therefore studied the discrepancies between calculated and observed values of TEC recorded at 15 stations covering a wide range of longitudes and latitudes, mainly in the northern hemisphere, and mainly for high levels of solar activity. W have found that the IRI produces reasonably accurate values of TEC at mid and high latitudes, but that it greatly underestimates the daytime values of TEC at low latitudes. We conclude therefore that the daytime electron density profile given by the IRI is reasonably accurate at mid and high latitudes, at least above the peak of the F2 layer. The situation at low latitudes clearly requires more work, and we have suggested two possible lines of study. The generally low discrepancies at night indicate that the night-time electron density profiles given by the IRI correspond fairly closely to the actual profiles.  相似文献   

17.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with hourly time interval resolution for the diurnal variation, obtained with DPS-4 digisonde observations at Hainan (19.4°N, 109.0°E) are used to study the low latitude ionospheric variation behavior. The observational results are compared with the International Reference Ionospheric Model (IRI) predictions. The time period coverage of the data used for the present study is from March 2002 to February 2005. Our present study showed that: (1) In general, IRI predictions using CCIR and URSI coefficients follow well the diurnal and seasonal variation patterns of the experimental values of foF2. However, CCIR foF2 and URSI foF2 IRI predictions systematically underestimate the observed results during most time period of the day, with the percentage difference ΔfoF2 (%) values changing between about −5% and −25%, whereas for a few hours around pre-sunrise, the IRI predictions generally overestimate the observational ones with ΔfoF2 (%) sometimes reaching as large as ∼30%. The agreement between the IRI results and the observational ones is better for the year 2002 than for the other years. The best agreement between the IRI results and the observational ones is obtained in summer when using URSI coefficients, with the seasonal average values of ΔfoF2 (%) being within the limits of ±10%. (2) In general, the IRI predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the observational results. However, when using the measured M(3000)F2 as input, the diurnal variation pattern of hmF2 given by IRI2001 has a much better agreement with the observational one with the detailed fine structures including the pre-sunrise and post-sunset peaks reproduced reasonably well. The agreement between the IRI predicted hmF2 values using CCIR M(30,000)F2 option and the observational ones is worst for the afternoon to post-midnight hours for the high solar activity year 2002. During daytime hours the agreement between the hmF2 values obtained with CCIR M(30,000)F2 option and the observational ones is best for summer season. The discrepancy between the observational hmF2 and that obtained with CCIR M(30,000)F2 option stem from the CCIR M(3000)F2 model, which does not produce the small scale structures observed in the measured M(3000)F2.  相似文献   

18.
An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.  相似文献   

19.
This paper mainly discusses the improvement of performance of the International Reference Ionosphere (IRI) model in estimating the variation of the Vertical Total Electron Content (VTEC) over the mid latitude American regions during the relatively low (2008–2010) and relatively high (2012) solar activity years. This has been conducted employing the VTEC values obtained from the dual frequency ground based Global Positioning System (GPS) receivers located at Mineral Area Community College, MACC (37.85°N, 269.52°W) and Mississippi County Airport, MAIR (36.85°N, 270.64°W), and the latest versions of the IRI online model (IRI 2007, IRI 2012 and IRI 2016). The study mainly focuses to compare the trend of variability of the monthly and seasonal modeled VTEC values (IRI 2007 VTEC, IRI 2012 VTEC and IRI 2016 VTEC) with the corresponding measured VTEC values (GPS VTEC). The overall results show that the IRI VTEC values (almost in all versions of the model) are generally smaller than the GPS VTEC except after about 15:00 UT (09:00 LT) in the December solstice when the Sun shifts to the high solar activity. On the contrary, overestimations of the VTEC values by the model are observed in traversing from the low solar activity (2008) to high solar activity (2012) phase, especially after about 15:00 UT (09::00 LT) with the IRI 2016 version showing the highest. In general, the IRI 2007 and IRI 2012 versions show similar monthly and seasonal underestimations or overestimations showing that the two versions have almost similar performance. The IRI 2016 version is generally better in capturing both the diurnal and arithmetic mean GPS VTEC values with some exceptional months and seasons as compared to those of the IRI 2007 and IRI 2012 versions.  相似文献   

20.
A Brazilian sounding rocket, SONDA III, with two airglow photometers and two ionospheric electron density probes, was launched successfully from Natal (5.8°S, 35.2°W), Brazil, on December 11, 1985, at 23:30 GMT. The observed height profiles of the atomic oxygen OI 5577Å and molecular oxygen Atmospheric (0,0) band at 7619Å emissions are discussed. This is the first simultaneous measurement of these emissions in the equatorial region. A preliminary analysis shows that the two emissions have peak emission heights located between 95 and 96 km, and their half widths are about 6 km. The O2A 7619Å emission peak, however, is located slightly lower, less than 1 km, than that of the OI 5577Å emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号