首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For obvious reasons the ionosphere of the polar cap, surrounded by the auroral zone, is only poorly investigated. Even ionosonde data are very scant from geomagnetic latitudes beyond 70°. Since 1997 the European incoherent scatter radar facility EISCAT has an additional installation on Svalbard and has been providing electron density data nearly continuously ever since. These measurements which mainly cover the E- and F-regions are supplemented by rocket data from Heiss Island at a comparable magnetic latitude; these data are more sporadic, but cover lower altitudes and densities. A provisional, steady-state, neural network-based model is presented which uses the data of both sites.  相似文献   

2.
A centaure rocket, with payloads of Langmuir probe and Electric field probe, was launched from Thumba (8° 31'N, O° 47'S dip), India on February 12, 1981 at 1057 Hrs IST. The aim of the experiment was to study the role of localised electric fields in the generation of plasma density irregularities through cross field instability and the two-stream instability mechanism. The rocket was launched at a time when Type I irregularities were observed with VHF radar at Thumba.  相似文献   

3.
Electron density and neutral wind velocity measurements were carried out by rocketborne probes from rocket ranges in India. The experiments were carried out at the time of the onset of spread-F at sunset hours. The results show that a neutral wind velocity in north-south direction greater than 100 m/sec is required to trigger spread-F. It is suggested that spread-F is generated by the interaction of neutral gas with ionospheric plasma.  相似文献   

4.
Ionospheric total electron content and the F-region maximum electron density at a number of stations in the equatorial region, during the recent solar activity maximum period 1979 to 1980, show significant differences between the two equinoctial periods. Ionization during the month of March is higher than in September, irrespective of the station location both in northern and southern hemispheres, and in different longitude sectors. The observed pattern is compared with those predicted by different models, in particular with one of the authors which includes processes such as ionization production, loss, electrodynamic drifts, winds and global composition changes involved in the equatorial ionosphere. It is found that a change in the neutral composition is primarily responsible for the observed F-region density differences between March and September.  相似文献   

5.
Measurement of the virtual height and the frequency of the minimum of the F-region extraordinary trace in digital and analog ionograms can provide a world-wide survey of the main parameters for the valley between E- and F-region ionization. The two added quantities establish also the starting point for the true height analysis of the F-region ionization.  相似文献   

6.
The D and E-region electron density profiles obtained by different techniques are compared with the IRI-79 model to see how they fit. The rocket data showed good agreement. However discrepancies between the observed and model values were found especially for solar zenith angle greater than 50 degrees.  相似文献   

7.
Methods are described by which the desired analytical representation of the whole profile might be reached while enforcing the most important observed physical features. An outline of future work in this connection is given.  相似文献   

8.
Electron density profiles from ground based and rocket borne measurements are presented which were derived at three sites in northern Scandinavia under various degrees of geophysical disturbance. These data are checked against the instantaneous picture of the ionospheric absorption as observed with the dense riometer network.  相似文献   

9.
The equilibrium electron density profile has been computed and compared with measured profiles by Venera 9 and Mariner 5 and 10. The computed electron density profile is seen to show discrepancies with measured data. The contribution of solar wind interaction induced convection to equilibrium electron density profile has been estimated. It is found that the convective processes are less important at lower altitudes, whereas at higher altitudes its contribution becomes dominant. The night side Venus ionosphere is formed due to the transport of O+ and impact ionization of neutral gases by suprathermal electrons. The discrepancies in theoretical and measured electron density profiles provide clear indication of additional energy source of solar wind origin.  相似文献   

10.
The shape of electron density profile in the International Reference Ionosphere could be improved significantly if the height hg and electron density Ng of the F region sub-peak inflexion point were entered in the set of the profile standard parameters. To study variations of these important parameters, the N(h) analysis of the statistically-summarized ionograms at the latitudes of 40–80°N of the Eastern hemisphere has been carried out for the two-hours intervals of local time, three seasons (winter, equinox and summer) and two levels of solar activities characterized by Covington indicesF10.7 = 100 and 200. It is shown that the parameters of the inflexion point can be expressed in most cases via the peak parameters of the F2 layer ashg= 0.8 hmF2 and Ng= 0.5 NmF2.  相似文献   

11.
Four versions of a steady-state quiet D-region model are presented. They differ from each other as a result of latitudinal differences in total neutral particle concentrations, nitric oxide concentrations and cosmic ray ionization rates. The total ion concentration profiles of all four versions have minima near 70 km which range from about 108 m?3 at high latitudes to 3.5 × 107 m?3 at equatorial latitudes for a solar zenith angle of 60°. Neutral density differences among the four cases result in important vertical shifts for the respective D-region profiles relative to one another. A “C-layer” is evident for the high and mild-latitude models at large solar zenith angles. The altitude where the negative ion/electron concentrations ratio is unity varies from about 63 to 67 km. The computed results are compared briefly with the extensive data base in the literature.  相似文献   

12.
A method is proposed for reconstructing the electron density profiles N(h) of the IRI model from ionograms of topside satellite sounding of the ionosphere. An ionograms feature is the presence of traces of signal reflection from the Earth's surface. The profile reconstruction is carried out in two stages. At the first stage, the N(h) –profile is calculated from the lower boundary of the ionosphere to the satellite height (total profile) by the method presented in this paper using the ionogram. In this case, the monotonic profile of the topside ionosphere is calculated by the classical method. The profile of the inner ionosphere is represented by analytical functions, the parameters of which are calculated by optimization methods using traces of signal reflection, both from the topside ionosphere and from the Earth. At the second stage, the profile calculated from the ionogram is used to obtain the key parameters: the height of the maximum hmF2 of the F2 layer, the critical frequency foF2, the values of B0 and B1, which determine the profile shape in the F region in the IRI model. The input of key parameters, time of observation, and coordinates of sounding into the IRI model allows obtaining the IRI-profile corrected to real experimental conditions. The results of using the data of the ISIS-2 satellite show that the profiles calculated from the ionograms and the IRI profiles corrected from them are close to each other in the inner ionosphere and can differ significantly in the topside ionosphere. This indicates the possibility of obtaining a profile in the inner ionosphere close to the real distribution, which can significantly expand the information database useful for the IRTAM (IRI Realmax Assimilative Modeling) model. The calculated profiles can be used independently for local ionospheric research.  相似文献   

13.
Energy distributions of thermal electrons (0.2 – 1 eV) were measured in the lower E region from the height of 90 Km. The distributions of the electrons started deviating from Maxwellian distributions at the height of ~104 Km. The distortion becomes most intense at the height of 107 Km and the electron population apparently consists of two groups at different electron temperatures in addition to excess high energy tail. The distortion almost vanished at the height of ~130 Km, again increased at ~150 Km and finally faded out at the height of ~210 Km. We suggest that both high electron temperature and excess high energy tail are locally generated by some ionospheric-current related mechanism.  相似文献   

14.
Electron density values were measured during morning hours over Thumba. The results show that electron density in mesosphere is more during summer than during winter for same solar zenith angle. The temperature measurements carried out on the same day during night hours show that mesosphere is hotter in winter and cooler in summer over Thumba. The electron density and temperature are anti-correlated. The results are explained in terms of temperature effects and other meteorological effects.  相似文献   

15.
Using daytime numerical ionospheric profiles from W. Becker's mid-latitude collection, the geometric parameters of 3 or 4 LAY-functions were determined by best fit while all amplitudes were redetermined step by step with a least squares criterion. It appeared that the transition height and scale of the main function are interrelated while all other geometric parameters are independent. Median values for a spring and a summer period are found, and relations with the peak altitude and half-density thickness of the input profile are established.  相似文献   

16.
A Langmuir probe operated in fixed bias mode was launched onboard a RH-560 rocket from the Sriharikota Range (SHAR, Lat.13° 42'N, Geog. Long.80° 14'E, dip 10°) India on October 1, 1980 at 21h03 IST, to study the electron density profile and the electron density irregularities in the equatorial spread-F. The payload was designed to study medium and large scale irregularities. A highly variable and structured electron density profile was obtained. This was the first rocket launch in the Indian zone during spread-F condition.  相似文献   

17.
The purpose of the LIEDR (local ionospheric electron density profile reconstruction) system is to acquire and process data from simultaneous ground-based total electron content (TEC) and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution above the ionosonde’s location. LIEDR is primarily designed to operate in real time for service applications and, for research applications and further development of the system, in a post-processing mode. The system is suitable for use at sites where collocated TEC and digital ionosonde measurements are available. Developments, implementations, and some preliminary results are presented and discussed in view of possible applications.  相似文献   

18.
An electron density profile model with free parameters is introduced. Initially the parameters are calculated on the basis of the ionospheric characteristics automatically obtained from the ionograms by Autoscala and considering the helio-geophysical conditions. The technique used to adjust the free parameters to the particular ionograms recorded is presented.  相似文献   

19.
Deviations from horizontal stratification in the F-region can cause significant errors in electron density profile calculations from ionograms. Such situations exist every day during sunrise and sunset. Angle of arrival measurements and studies of the variation of other F-region parameters indicate that gravity waves are frequently strong enough to produce effects of comparable magnitudes. Ray tracing model studies permit a first order estimate of the resulting errors which are largest for the peak parameters.  相似文献   

20.
Different models for the F2 peak altitude hmF2 are compared with mean values determined from incoherent scatter measurements of the radar stations Jicamarca/Peru and Arecibo/Puerto Rico at all local times. Our investigation shows that the daytime hmF2 is fairly well represented by the most recent models, whereas at nighttime, higher peak altitudes are measured than predicted by either model. The observed diurnal structure is slightly misinterpreted by the models above Jicamarca and is strongly disagreeing above Arecibo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号