共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical model characterizing internal gravity wave propagation into the upper atmosphere 总被引:1,自引:0,他引:1
Yonghui Yu Michael P. Hickey Yinfeng Liu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,44(7):836-846
A new two-dimensional, time-dependent and fully nonlinear model is developed to numerically simulate plane wave motions for internal gravity waves in a non-isothermal and windy atmosphere that accounts for the dissipation due to eddy and molecular processes. The atmosphere has been treated as a well mixed total gas with a constant mean molecular weight. The effects of Rayleigh friction and Newtonian cooling are applied near the upper boundary of the model to simulate the radiation conditions as well as to act as a sponge layer; lateral boundaries are periodic over a horizontal wavelength to simulate a horizontally infinite domain. The thermal excitation to initiate upward propagating waves is spatially localized in the troposphere and is a Gaussian function of time. A time-splitting technique is applied to the finite difference equations that are derived from the Navier–Stokes equations. The time integration for these highly coupled equations is performed using an explicit second order Lax–Wendroff scheme and an implicit Newton–Raphson scheme. The wave solutions derived from the model are found to be broadly agreeable with those derived from a Wentzel–Kramers–Brillouin theory. 相似文献
2.
B. Schmieder P. Mein J.C. Vial E. Tandberg-Hanssen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1982,2(11):225-228
Simultaneous Hα (MSDP at Meudon) and C IV (UVSP aboard SMM) measurements of Active Region 2701 were made on October 2, 1980. Isodensity and velocity maps were derived for both lines and superposed. A good correlation was found between Hα and C IV velocities. A surge was observed for 10 minutes. The base was located in a bright point in CIV and Hα, and escaping matter followed the same channel (“absorbing” in Hα, “emitting” in C IV). The velocity along the surge was about 80 kms.-1 in Hα and 100 km s-1 in C IV. A loop appeared in C IV. We discuss the existing models and conclude that the vertical pressure gradient was capable of driving the surge. 相似文献
3.
4.
C. Jacobs S. Poedts 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The solar wind fills the heliosphere and is the background medium in which coronal mass ejections propagate. A realistic modelling of the solar wind is therefore essential for space weather research and for reliable predictions. Although the solar wind is highly anisotropic, magnetohydrodynamic (MHD) models are able to reproduce the global, average solar wind characteristics rather well. The modern computer power makes it possible to perform full three dimensional (3D) simulations in domains extending beyond the Earth’s orbit, to include observationally driven boundary conditions, and to implement even more realistic physics in the equations. In general, MHD models for the solar wind often make use of additional source and sink terms in order to mimic the observed solar wind parameters and/or they hide the not-explicitly modelled physical processes in a reduced or variable adiabatic index. Even the models that try to take as much as possible physics into account, still need additional source terms and fine tuning of the parameters in order to produce realistic results. In this paper we present a new and simple polytropic model for the solar wind, incorporating data from the ACE spacecraft to set the model parameters. This approach allows to reproduce the different types of solar wind, where the simulated plasma variables are in good correspondence with the observed solar wind plasma near 1 AU. 相似文献
5.
6.
Z. Romeou M. Velli G. Einaudi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution. 相似文献
7.
Heiner Körnich Erich Becker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The interhemispheric coupling of the middle atmosphere general circulation is characterized by a global anomaly pattern of the zonal-mean temperature. This pattern reflects an anomalous stratospheric and mesospheric residual circulation, in which a weaker (stronger) stratospheric winter circulation is linked to an upward (downward) shift of its upper mesospheric branch reaching from the summer to the winter pole. This phenomenon is robust in observational data and several middle atmosphere general circulation models. In the present study, the recently proposed mechanism of the interhemispheric coupling is unequivocally proven within the framework of a zonally symmetric model that excludes any additional effects due to resolved waves and non-zonally propagating gravity waves. Two simulations are conducted that differ in the strength of the polar vortex. A weaker polar vortex results in a downward shift of the winter mesospheric gravity wave drag. This leads to changes also in the summer upper mesosphere via a feedback solely between gravity wave breaking and the zonal-mean state. The accompanying temperature anomaly reproduces the pattern of the interhemispheric coupling. 相似文献
8.
Piyali Chatterjee Arnab Rai Choudhuri Kristof Petrovay Dibyendu Nandy 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):893-896
Active regions on the solar surface are known to possess magnetic helicity, which is predominantly negative in the northern hemisphere and positive in the southern hemisphere. Choudhuri et al. [Choudhuri, A.R. On the connection between mean field dynamo theory and flux tubes. Solar Phys. 215, 31–55, 2003] proposed that the magnetic helicity arises due to the wrapping up of the poloidal field of the convection zone around rising flux tubes which form active regions. Choudhuri [Choudhuri, A.R., Chatterjee, P., Nandy, D. Helicity of solar active regions from a dynamo model. ApJ 615, L57–L60, 2004] used this idea to calculate magnetic helicity from their solar dynamo model. Apart from getting broad agreements with observational data, they also predict that the hemispheric helicity rule may be violated at the beginning of a solar cycle. Chatterjee et al. [Chatterjee, P., Choudhuri, A.R., Petrovay, K. Development of twist in an emerging magnetic flux tube by poloidal field accretion. A&A 449, 781–789, 2006] study the penetration of the wrapped poloidal field into the rising flux tube due to turbulent diffusion using a simple 1-d model. They find that the extent of penetration of the wrapped field will depend on how weak the magnetic field inside the rising flux tube becomes before its emergence. They conclude that more detailed observational data will throw light on the physical conditions of flux tubes just before their emergence to the photosphere. 相似文献
9.
S. Hayakawa 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(13):145-148
A new burst mode of MXB 1730 - 335, the rapid burster, as discovered by Hakucho in August 1979, is characterized by a train of long X-ray bursts whose behaviour is dictated by the accretion rate. In this mode the burst luminosity reaches the Eddington limit, so that the X-ray pressure controls the accretion from a reservoir in the magnetopause and accretion columns in the polar regions explain general features of the rapid burster observed in August 1979. 相似文献
10.
W. F. Huebner 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(12):2555-2562
Topography of the surface of a comet nucleus is likely rough at all scales smaller than the mean effective radius. We present a flexible and easily scalable model for quantitative calculations simulating the effects of comet nucleus topography on gas release and dust mantle evolution. The topographic features we describe must be large enough (typically> 10 m) so that they will not erode in one orbit of the nucleus around the Sun. The maximum effective size of a hill is about 1/√2 times the effective radius of the nucleus. If it is larger, then an ellipsoidal shape of the nucleus is more appropriate. The procedure described here also permits for inhomogeneous composition of the topographic features, leading to locally different rates of gas production (e.g., jet-like features and filaments) or different thicknesses of the dust mantle. It also can give rise to different temperature patches, locally varying albedos and emissivities, and may explain the formation of permanent dust mantles. 相似文献
11.
Jelena Kovačević Luka Č. Popović Wolfram Kollatschny 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Here we present a new method for subtracting the Balmer pseudocontinuum in the UV part of type 1 AGN spectra. We calculate the intensity of the Balmer pseudocontinuum using the prominent Balmer lines in AGN spectra. We apply the model on a sample of 293 type 1 AGNs from SDSS database, and found that our model of Balmer pseudocontinuum + power law continuum very well fits the majority of AGN spectra from the sample, while in ∼15% of AGNs, the model fits reasonable the UV continuum, but a discrepancy between the observed and fitted spectra is noted. Some of the possible reasons for the discrepancy may be a different value for the optical depth in these spectra than used in our model or the influence of the intrinsic reddening. 相似文献
12.
R. Hoogendoorn E. Mooij J. Geul 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):167-181
Predictions of the impact time and location of space debris in a decaying trajectory are highly influenced by uncertainties. The traditional Monte Carlo (MC) method can be used to perform accurate statistical impact predictions, but requires a large computational effort. A method is investigated that directly propagates a Probability Density Function (PDF) in time, which has the potential to obtain more accurate results with less computational effort. The decaying trajectory of Delta-K rocket stages was used to test the methods using a six degrees-of-freedom state model. The PDF of the state of the body was propagated in time to obtain impact-time distributions. This Direct PDF Propagation (DPP) method results in a multi-dimensional scattered dataset of the PDF of the state, which is highly challenging to process. No accurate results could be obtained, because of the structure of the DPP data and the high dimensionality. Therefore, the DPP method is less suitable for practical uncontrolled entry problems and the traditional MC method remains superior. Additionally, the MC method was used with two improved uncertainty models to obtain impact-time distributions, which were validated using observations of true impacts. For one of the two uncertainty models, statistically more valid impact-time distributions were obtained than in previous research. 相似文献
13.
Samy El-Jaby Brent J. Lewis Leena Tomi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East–West asymmetry were observed at this location. 相似文献
14.
Y Ishikawa K Kuriki 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(9):35-38
The chemistry in a supersonic plasma source flow was studied as a laboratory model for interstellar chemical evolution. It is important to match the similarity parameters for cosmic and laboratory conditions, which connect the temporal and spatial scales of the two cases. The apparatus simulated the conditions in a molecular cloud with respect to molecular-ionic reaction fraction, temperature, and non-equilibrium kinetics. The plasma flow was found to be cold enough, by the radical expansion, to produce polyatomic molecules. From the simple atomic plasma as reactant, cyanopolyyne and unsaturated hydrocarbons were synthesized in the present experiment. These molecules are also inherent in molecular clouds. The reaction mechanism is discussed. 相似文献
15.
M. Dryer S.T. Wu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(3):85-88
A two-dimensional, time-dependent magnetohydrodynamic (MHD) model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. This model has already been used with some success for simulation of some major features of type II shocks and white light coronal transients. In this presentation, we have studied the effects of initial magnetic topology and strength on the formation of MHD shocks. We consider the plasma beta (thermal pressure/magnetic pressure) as a measure of the , relative strength of the field. During dynamic mass motion, the Alfvén Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. We suggest that this model (computed self-consistently) provides the shock wave and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration. 相似文献
16.
H. Karszenbaum D.A. Gagliardini 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(12):35-38
In this paper we analyse from a new point of view the energy deposition due to precipitated protons when they interact with the atmospheric components. The method described presents a different way of calculating the proton interaction and allows us to obtain the production rate and fluxes of the generated electrons as function of height and energy. Also the model gives the possibility of estimating independently the effects of protons and resulting secondary and tertiary electrons in protons events. 相似文献
17.
D. Summers R.M. Thorne F. Xiao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2000,25(12):2373-2378
The theory of resonant diffusion is extended to fully relativistic plasmas, and we examine resonant interactions between electrons and electromagnetic R mode (whistler) and L-mode (EMIC) waves. Resonant diffusion curves are constructed for plasma parameters representative of the Earth's storm time magnetosphere, both inside and outside the plasmapause. EMIC waves can resonate with electrons > 1 MeV, but the energies remain nearly constant along the diffusion curves. Storm-time EMIC waves can induce rapid pitch—angle scattering, but the waves are ineffective for stochastic acceleration of elections. Substantial energy change can occur along the diffusion curves for interactions between resonant electrons and whistler—mode waves, especially in regions of low plasma density. Specifically, whistlers can accelerate electrons from energies near 100 keV to above 1 MeV outside the plasmapause. A model is proposed comprising energy diffusion by whistler-mode chorus and pitch-angle scattering by EMIC waves to account for the gradual acceleration of electrons over the region 4 ≤ L ≤ 6 during the recovery phase of a geomagnetic storm. 相似文献
18.
A.D. Danilov A.P. Yaichnikov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):75-79
Ion composition of the ionosphere is an important parameter of any ionospheric model. The International Reference Ionosphere-1979 includes a program for the relative ion composition computation. The program was constructed on the basis of the Danilov and Semenov /1/ empirical model, which averaged 42 rocket measurements of the ion composition at middle latitudes below 200 km, on “AEROS” satellite measurements, and on Taylor's data /2/ above that altitude. 相似文献
19.
M. Friedrich M. Fankhauser 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
For obvious reasons the ionosphere of the polar cap, surrounded by the auroral zone, is only poorly investigated. Even ionosonde data are very scant from geomagnetic latitudes beyond 70°. Since 1997 the European incoherent scatter radar facility EISCAT has an additional installation on Svalbard and has been providing electron density data nearly continuously ever since. These measurements which mainly cover the E- and F-regions are supplemented by rocket data from Heiss Island at a comparable magnetic latitude; these data are more sporadic, but cover lower altitudes and densities. A provisional, steady-state, neural network-based model is presented which uses the data of both sites. 相似文献
20.
E.L. Afraimovich S.V. VoeykovN.P. Perevalova K.G. Ratovsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered using measurements of total electron content (TEC) during the magnetic storms on October 29–31, 2003, and on November 7–11, 2004, had been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region foF2 were used for this purpose. The variations of TEC and foF2 were similar for all events mentioned above. The previous assumption that the ionospheric region with vertical extension from 150 to 200 km located near the F-layer maximum mainly contributes to the TEC variations was confirmed for the cases when the electron density disturbance at the F region maximum was not more than 50%. However, this region probably becomes vertically more extended when the electron density disturbance in the ionospheric F region is about 85%. 相似文献