首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our current knowledge on the composition of the Venus atmosphere in the altitude range from the surface to 100 km is compiled. Gases that have been measured, and whose mixing ratios are assumed to be constant with altitude, are CO2, N2, He, Ne, Ar, and Kr. Gases that have been identified in the lower and/or middle atmosphere, but whose mixing ratios may depend on altitude, latitude and/or local time, are CO, H2O, HCl, HF, and SO2. Conflicting data or only upper limits exist on some important trace gases, such as O2, H2, and Cl2. The latter two are key constituents in the photochemistry of the middle atmosphere of Venus. The chapter concludes with a listing of the isotopic abundances of elements measured in the Venus atmosphere.  相似文献   

2.
The present state of knowledge of the structure of the atmospheres of Mars and Venus below 100 km is reviewed. Both atmospheres have been characterized to a remarkable degree, considering their remoteness from Earth. Mars' atmosphere is more variable, and less well defined. The variability is seasonal, diurnal, and latitude dependent, and also is strongly affected by atmospheric dust. Venus' atmosphere is less variable and better defined, as a result of numerous spacecraft missions. Mars' atmosphere is generally statically stable from the surface to 100 km, and its temperatures are controlled by radiative transfer moderated by vertical flow. Venus' lower atmosphere is stratified, with stable layers predominating. Its temperatures also are controlled by radiation and vertical motion. Thermal tidal motions occur in both atmospheres at about the same pressure levels, with larger amplitudes at Venus, consistent with the larger solar input at Venus.  相似文献   

3.
A reference model of the atmospheric circulation on Venus based on available observations is presented. The reference atmosphere has the following main features: (i) the entire atmosphere below 85 km moves predominantly from east to west in the planet's reference system (in the same direction as the rotation of the solid planet itself) with the possible exception of the lowest 10 km where velocities are low, (ii) a jet is present near the cloud-top level at 45° latitude in both hemispheres, with a magnitude of approximately 100 ms?1, (iii) a weak meridional (north-south component) flow directed towards either pole is superimposed on the zonal (east-west) motion at cloud-top level (about 68 km) altitudes, and, (iv) eddies or wave motions are present in the atmosphere, with amplitudes of less than 15 ms?1 in the upper atmosphere.  相似文献   

4.
Continued analysis of the pressure and temperature data returned by the two Vega mission balloons has revealed an apparently significant difference in mean atmospheric static stability between the two data sets. Furthermore, the stability is time dependent within each data set, as reported earlier. The 6.5K temperature contrast between the two balloons remains, and appears to have a counterpart in the contrast between two of the Pioneer Venus probes at these levels, which has been attributed to planetary scale waves. Comparisons of the Vega 2 Lander data with those of the Pioneer Venus Large Probe shows relatively close agreement in the state properties and in the atmospheric static stability profiles as well.  相似文献   

5.
Radio occultation measurements of the temperature structure of the Venus atmosphere have been obtained during seven occultation “seasons” extending from December 1978 to December 1983. Approximately 123 vertical profiles of temperature from about 40 km to about 85 km altitudes have been derived. Since these measurements cover latitudes from both poles to the equator, they have shown the latitudinal dependence of thermal structure. There is a smooth transition from the troposphere to the mesosphere at latitudes below about 45°, with the tropopause at about 56 km. The troposphere then rises to about 62 km in the “collar cloud” region between about 60° and 80° latitude, where a strong temperature inversion (up to 30 K) is present. In the polar areas, 80°–90°, the mesosphere becomes isothermal and there is no inversion. This latitudinal behavior is related to the persistent circulation pattern, in which a predominantly zonal retrograde motion at latitudes below 45° gradually changes to a circumpolar vortex at the “collar cloud” latitudes. Indeed, the radio occultation data have been used in a cyclostrophic balance model to derive zonal winds in the Venus atmosphere, which showed a mid-latitude (50°–55°) jet with a speed of about 120–140 ms?1 at about 70 km altitude /1,2/. The observations obtained in 1983 and 1984 have shown that above the tropopause there is considerable temporal variability in the detailed thermal structure, suggesting that the persistent circulation pattern is subject to weather-like variability.  相似文献   

6.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

7.
The definitive data set for the mean thermal structure of the Venusian middle atmosphere is published for the first time. Some recent interim results on a modelling study to interpret the measured thermal field in terms of the global dynamics are also presented. These indicate that (a) the zonal winds on Venus fall to very low values above about 90 km, (b) there is a strong mid-latitude jet which circles the planet approximately every two days, (c) the observed solar tides are dominated by the semi-diurnal component, in agreement with theory.  相似文献   

8.
9.
This work is devoted to the derivation of the optical properties of the Venus atmosphere from “Venera-10” optical measurements. Within the framework of a two-layer model of Venus atmosphere it is found that in the spectral interval 0.52 – 0.85 μm the optical thickness of the upper cloud layer is ≈ 50 and the optical parameters of the lower layer are similar to the Rayleigh ones. Comparison is made between the measurements of radiation field within the atmosphere and the results of strict calculations. A preliminary conclusion is suggested that there are considerable numbers of aerosol particles with a radius ? 0.03 μm in the lower layer. The results of the upper boundary of the cloud layer is estimated to be ≈ 70 km.  相似文献   

10.
11.
When the solar wind dynamic pressure is high, the Venus ionosphere usually contains a belt of steady magnetic field at the very lowest altitudes to which Pioneer Venus probes. The current layer that flows on the high altitude side of this low altitude belt is centered at an altitude which ranges from 170 to 190 km with a most probable altitude of 182 km. This altitude is independent of solar zenith angle and hence the current system is flowing horizontally rather than vertically as proposed by Cloutier and co-workers. The lower edge of the magnetic belt was probed only on the lowest altitude passes of Pioneer Venus. This boundary is even more stable in location. The belt has decayed to 90% of its maximum strength usually by 162 km and to 50% of its maximum strength by 155 km. We interpret these data to indicate that the observed magnetic structure of the Venus ionosphere is a product of temporal evolution rather than of spacecraft motion through a spatially varying static structure.  相似文献   

12.
13.
Infrared spectra of Venus measured by means of the Fourier spectrometer aboard Venera 15 orbiter were used for retrievals of temperature profiles of the atmosphere in the altitude range from 60 to 95 km. Monotonous profiles are typical for latitudes lower than 60° latitude, but on the dayside near the equator some traces of the upper atmospheric inversion were found in the profiles. At latitudes greater than 60°N the profiles contain an isothermal or inversional part between 10 and 100 hPa pressure levels. Temperature profiles inside the “warm dipole” maxima are the same as outside of this region and consequently these optical properties should be explained only by peculiarities of cloud structure there.  相似文献   

14.
15.
Spin-scan images from the Pioneer Venus Orbiter UV Spectrometer and the Cloud Photopolarimeter provide a set of planetary contrast measurements in the wavelength range 1990A to 3650A and phase angles from 33°–130°. The planet is darkest at the point where the UVS line of sight penetrates perpendicular to the cloud tops: thus the absorbing material responsible must be deep in the atmosphere. Sulfur dioxide absorption can explain the amount of contrast seen between 2000A and 3200A. At the longer wavelengths, the persistence of contrast requires another absorber which is deeper in the atmosphere and strongly associated with the location of the SO2. Part of the observed contrast is due to the high-lying haze discovered from Pioneer Venus polarimetry. The correlation between planetary contrast and polarization does not support large scale clearing or major vertical motions of the cloud tops as the sole cause of the observed contrast. However, a scheme in which absorbers subject to photochemical destruction are mixed upward into the cloud top region provides a consistent explanation for the origin of these markings.  相似文献   

16.
The Solar Flux Radiometer (LSFR) experiment on the large probe of the Pioneer Venus (PV) mission made detailed measurements of the vertical profile of the upward and downward broadband flux of sunlight at a solar zenith angle of 65.7°. These data have been combined with cloud particle size distribution measurements on the PV mission to produce a forward-scattering model of the Venus clouds. The distribution of clouds at high altitudes is constrained by measurements from the PV orbiter. Below the clouds the visible spectrum and flux levels are consistent with Venera measurements at other solar zenith angles. The variations in the optical parameters with height and with wavelength are summarized in several figures. The model is used to evaluate the solar heating rate at cloud levels as a function of altitude, solar longitude, and latitude for use in dynamical studies.  相似文献   

17.
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed.  相似文献   

18.
The shape of the dayside Venus ionopause, and its dependence on solar wind parameters, is examined using Pioneer Venus Orbiter field and particle data. The ionopause is defined here as the altitude of pressure equality between magnetosheath magnetic pressure and ionospheric thermal pressure; its typical altitudes range from ~300 km near the subsolar point to ~900 km near the terminator. A strong correlation between ionopause altitude and magnetosheath magnetic pressure is demonstrated; correlation between magnetic pressure and the normally incident component of solar wind dynamic pressure is also evident. The data support the hypothesis of control of the ionopause altitude by solar wind dynamic pressure, manifested in the sheath as magnetic pressure. The presence of large scale magnetic fields in the ionosphere is observed primarily when dynamic pressure is high and the ionopause is low.  相似文献   

19.
Physical and mechanical properties as well as chemical and mineral composition of Venus rocks are discussed on the basic of the data obtained by ground-based radar observations and the experiments in situ.  相似文献   

20.
Continued analysis of Pioneer Venus imaging and polarimetry data indicates that the average cloud-top level circulation is mainly zonal (east to west) with a small meridional component. Presence of planetary scale waves and a possible sun-related component are evident in the data. If the tracked features refer to the same vertical level, then some variability of the circulation would have to be present to account for the Pioneer and Mariner 10 cloud-tracking results. However, the implied balanced flow from the observed thermal structure analysis strongly suggests that at least some of the variations in these observations is due to apparent cloud-top variations and that the circulation itself is relatively stable.Direct cyclostrophic calculations based on the observed thermal structure of the atmosphere yield a balanced zonal circulation with distinct mid-latitude jets (peak velocities about 110–120 ms?1) located between 50 and 40 mb in each hemisphere of the planet near 45° latitude. The calculations which extend to about 40 km altitude from 80 km above the surface agree well with the observed entry probe zonal components and indicate breakdown of the balance condition near the upper and lower boundaries at low latitudes.The balanced flow results are consistent with the Mariner 10 and Pioneer cloud tracked estimates of the zonal circulation provided the effective altitude of the tracked features is slightly different at different observation periods. The features in the Pioneer Venus data would then lie on a sloping surface that extends from about 68 km (40 mb) at low latitudes to about 75 km (10 mb) in mid-latitudes. The polarization features would occur on a roughly parallel surface that is 1–2 km above the effective cloud-height surface, and Mariner 10 features would have effective altitudes somewhat lower than the Pioneer ultraviolet features. A slight asymmetry is evident in the balanced zonal circulation arising out of an asymmetry in the thermal field.Finally, the solenoids formed by intersecting isobaric and isosteric (constant specific volume) surfaces deduced from the Pioneer Venus radio occultation data show distinct evidence of a direct meridional circulation that may be important in sustaining the Venus atmospheric circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号