首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of radio waves that have propagated through planetary atmospheres have provided exploratory results on atmospheric constituents, structure, dynamics, and ionization for Venus, Mars, Titan, Jupiter, Saturn, and Uranus. Highlights of past results are reviewed in order to define and illustrate the potential of occultation and related radio studies in future planetary missions.  相似文献   

2.
A large number of atoms and molecules have strong emission lines in the vacuum ultraviolet. As a result, this spectral region is particularly suited to studying the upper atmospheres of the planets. The observed emissions not only identify the constituents, but also provide information on the solar and magnetospheric excitation processes. Long term monitoring of these emissions, particularly with modest spatial resolution, can elucidate the effects of variations in the solar input as well as changes in magnetospheric conditions. Also, earth orbiting telescopes generally provide better spectral resolution than is available on flyby vehicles. A modest beginning in planetary upper atmospheric studies from earth orbit has been made using orbiting observatories designed primarily for stellar astronomy. As examples of the power of this technique, some recent results will be reviewed with an emphasis on Jupiter and the Io torus. The unusual scheduling requirements and the effects of scattered intense long wavelength radiation put demands on orbiting planetary observatories which are somewhat different from those of stellar astronomy. The implications of these demands for continued advances in this area are discussed.  相似文献   

3.
Spacecraft measurements of the plasma populations and magnetic fields near Jupiter and Saturn have revealed that large magnetospheres surround both planets. Magnetic field measurements have indicated closed field line topologies in the dayside magnetospheres of both planets while plasma instruments have shown these regions to be populated by both hot and cold plasma components convected azimuthally in the sense of planetary rotation. By using published data from the Voyager Plasma Science (PLS), Low Energy Charged Particle (LECP), and Magnetometer (MAG) instruments, it is possible to investigate the validity of the time stationary MHD momentum equation in the middle magnetospheres of Jupiter and Saturn. At Saturn, the hot plasma population is negligible in the dynamic sense and the centrifugal force of the cold rotating plasma appears to balance the Lorentz force. At Jupiter, the centrifugal force balances ~25% of the Lorentz force. The remaining inward Lorentz force is balanced by pressure gradients in the hot, high-β plasma of the Jovian magnetodisk.  相似文献   

4.
For the distant giant planets, Uranus and Neptune, the observation of aurorae may be the best astronomical technique for the detection of planetary magnetic fields, with implications for the structure and composition of their interiors. Aurorae may be detected by emssion of H I Ly α (1216 Å) and by H2 bands near 1600 Å. The latter are important for very faint aurorae because there is essentially no planetary, interplanetary or geocoronal scattering of sunlight to contaminate the signal. For Uranus, present IUE results suggest the presence of a strong aurora at Ly α, but the background and instrument noise levels are very high compared to the apparent signal. At 1600 Å, the IUE instrument noise renders the H2 emission bands on Uranus marginal at best. No aurora has yet been observed on Neptune. For Jupiter, where the existence and general characteristics of the magnetic field are well established, there is disagreement between ground-based infrared and space-borne ultraviolet observations of the location of the aurorae. For all four giant planets, Space Telescope can improve upon the quality of current optical observations. For spectroscopy, the low resolution mode of the High Resolution Spectrograph (HRS) is particularly well suited to auroral observations because of its spectral range, adequate resolution and high sensitivity. For ultraviolet imaging through appropriate filters, the ST spatial resolution, expected to be of order 5 hundredths of an arc second, is also well suited to determine the spatial properties of the aurorae.  相似文献   

5.
The observable effects of Raman scattering on the spectra of the giant planets may provide new information on the composition and structure of these atmospheres. Satellite observations have already shown the influence of Raman scattering on the UV continuum albedo. A cross correlation technique is presented for detecting rotational and vibrational transitions of the Raman active gases in the atmosphere. This technique has been applied to ground-based visible spectra of Venus, Jupiter, Saturn and Uranus. Extension of this method into the UV would improve the detectability of the Raman lines because the ratio of Raman to Rayleigh cross section increases with decreasing wavelength. The technology currently exists to efficiently obtain high signal-to-noise ratio UV spectra through the use of silicon diode array detectors. Application of the cross-correlation technique to UV spectra obtained from space vehicles would give us a new important probe of the structure and composition of planetary atmospheres by enabling us to use the UV spectra of a planet to observe that would normally be an infrared molecular transition.  相似文献   

6.
The ionospheres of the major planets Jupiter, Saturn, and Uranus are reviewed in light of Pioneer and Voyager observations. Some refinements to pre-Voyager theoretical models are required to explain the results, most notably the addition of significant particle ionization from ‛electroglow” and auroral processes and the need for additional chemical loss of protons via charge exchange reactions with water. Water from the Saturn rings has been identified as a major modifier of the Saturn ionosphere and water influx from satellites and/or meteorites may also be important at Jupiter and Uranus as well, as evidenced by the observed ionospheric structure and the identification of cold stratospheric carbon monoxide at Jupiter.  相似文献   

7.
The study of planetary magnetospheres allows us to understand processes occurring in the Earth’s magnetosphere by showing us how these processes respond under different conditions. We illustrate lessons learned about the control of the size of the magnetosphere by the dynamic pressure of the solar wind; how cold plasma is lost from magnetospheres; how free energy is generated to produce ion cyclotron waves; the role of fast neutrals in a planetary magnetosphere; the interchange instability; and reconnection in a magnetodisk. Not all information flow is from Jupiter and Saturn to Earth; some flows the other way.  相似文献   

8.
Recent progress on measurements of isotopic ratios in planetary or satellite atmospheres include measurements of the D/H ratio in the methane of Uranus, Neptune and Titan and in the water of Mars and Venus. Implications of these measurements on our understanding of the formation and evolution of the planets and satellite are discussed. Our current knowledge of the carbon, nitrogen and oxygen isotopic ratios in the atmospheres of these planets, as well as on Jupiter and Saturn, is also reviewed. We finally show what progress can be expected in the very near future due to some new ground-based instrumentation particularly well suited to such studies, and to forthcoming space missions.  相似文献   

9.
Jupiter and Saturn are two of the more “exotic” planets in our solar system. The former possesses its own system with 15 satellites in orbit about the parent planet. Saturn has a uniquely well developed and distinctive ring system of particulate matter and also at least 11 satellites, including the largest one amongst all the planets, Titan, with a radius of 2900 km ± 100 km. In the decade of the 70's, the USA launched 4 unmanned spacecraft to probe these giant planets in-situ with a suite of highly advanced instrumentation. Four separate encounters have occurred at Jupiter: 1. Pioneer 10 in December 1973 2. Pioner 11 in December 1974 3. Voyager 1 in March 1979 4. Voyager 2 in July 1979 The characteristics of these trajectories is shown in Table I. Thus far, only a single encounter of Saturn has occurred, that by Pioneer 11 in September 1979. Future encounters of Saturn by Voyager spacecraft will occur in mid-November 1980 and late-August 1981. It is the purpose of this talk to summarize what is presently known about the magnetic fields of these planets and the characteristics of their magnetospheres, which are formed by interaction with the solar wind.  相似文献   

10.
Several recent papers have reviewed the upper atmospheres and ionospheres of Jupiter and Saturn in the post Voyager era (see, e.g., /1/ and references therein). Therefore, this paper will review only the most salient characteristics, as far as Jupiter and Saturn are concerned. The emphasis here, however, is placed on the Uranus upper atmosphere that was probed in January, 1986, by Voyager 2 spacecraft. In particular comparative aspects of atmospheric composition, thermal structure, photochemistry and the vertical mixing are discussed.  相似文献   

11.
The International Ultraviolet Explorer (IUE) has provided both improved spectral resolution and some spatial resolution for UV observations of Jupiter. Previous satellite observations have produced albedo curves for Jupiter showing the influence of Rayleigh scattering, and of some absorber(s) shortward of 2500Å on the UV spectrum. Constraints on the abundance of several minor constituents of the Jovian atmosphere were derived from the OAO-2 data. The IUE low dispersion data has a resolution of 8Å, making it possible to detect individual molecular features. A series of C2H2 absorptions in the 1750Å region have been identified, and indications of NH3 absorptions are present in the 1950Å region.  相似文献   

12.
Titan, the largest satellite of Saturn, with a dense atmosphere very rich in organics, and many couplings in the various parts of its "geofluid", is a reference for studying prebiotic chemistry on a planetary scale. New data have been obtained from experiments simulating this organic chemistry (gas and aerosol phases), within the right ranges of temperature and a careful avoiding of any chemical contamination. They show a very good agreement with the observational data, demonstrating for the first time the formation of all the organic species already detected in Titan atmosphere including, at last, C4N2, together with many other species not yet detected in Titan. This strongly suggests the presence of more complex organics in Titan's atmosphere and surface, including high molecular weight polyynes and cyanopolyynes. The NASA-ESA Cassini-Huygens mission has been successfully launched in October 1997. The Cassini spacecraft will reach the Saturn system in 2004 and become an orbiter around Saturn, while the Huygens probe will penetrate into Titan's atmosphere. In situ measurements, in particular from Huygens GC-MS and ACP instruments, will provide a detailed analysis of the organics present in the air, aerosols, and surface. This very ambitious mission should yield much information of crucial importance for our knowledge of the complexity of Titan's chemistry, and, more generally for the field of exobiology.  相似文献   

13.
This study extends the investigation of the ripples in the solar wind and the interplanetary magnetic field at L1 reported by Birch and Hargreaves (2020) to cover heliospheric distances from 1 to 40 AU, using data from the Voyager 2, Ulysses, Juno, Cassini, Themis and Apollo-12 spacecraft. The ripples were extracted from the source data using a bandpass filter which reduces the noise component of the source data while removing long-term trends. The ripples were found to propagate throughout the heliosphere with an average periodicity of 26 min, without significant attenuation relative to the background. They also permeated within the magnetospheres of Earth, Jupiter and Saturn with an average periodicity of 25 min, though with some attenuation relative to the solar wind, especially in the case of Jupiter. Within the planetary magnetospheres, the ripples were suppressed by the intense fields in close proximity to each planet, and though the distance varied at which this cutoff occurred, the flux density was very similar in all three cases.  相似文献   

14.
The Planetary Radio Astronomy instruments on Voyager 1 and 2 provided new, highly detailed measurements of several different kinds of strong, nonthermal radiation generated in the inner magnetospheres and upper ionospheres of Jupiter and Saturn. At Jupiter, an intense decameter-wavelength component (between a few tenths of a MHz and 39.5 MHz) is characterized by complex, highly organized structure in the frequency-time domain and by a strong dependence on the longitude of the observer and, in some cases, of Io. At frequencies below about 1 MHz there exists a (principally) kilometer-wavelength component of emission that is bursty, relatively broadbanded (typically covering 10 to 1000 kHz), and strongly modulated by planetary rotation. The properties of this component are consistent with a source confined to high latitudes on the dayside hemisphere of Jupiter. A second kilometric component is narrow-banded, relatively weak and exhibits a spectral peak near 100 kHz. The narrowband component also occurs periodically but at a repetition rate that is a few percent slower than that corresponding to the planetary rotation rate. This component is thought to originate at a frequency near the electron plasma frequency in the outer part of the Io plasma torus (8 to 10 RJ) and to reflect the small departures from perfect corotation experienced by plasma there.The Voyager instruments also detected intense, low frequency, radio emissions from the Saturn system. The Saturnian kilometric radiation is observed in a relatively narrow frequency band between 3 kHz and 1.2 MHz, is elliptically or circularly polarized, and is strongly modulated in intensity at Saturn's 10.66-hr rotation period. This emission is believed to be emitted in the right-hand extraordinary mode from regions near or in Saturn's dayside, polar, magnetospheric cusps. Variations in intensity at Saturn's rotation period may correspond to the rotation of a localized magnetic anomaly into the vicinity of the ionospheric footprint of the polar cusp. Variations in activity on time scales of a few days and longer seem to indicate that both the solar wind and the satellite Dione can also influence the generation of the radio emission.  相似文献   

15.
We present the latest observations from spacecraft and ground-based instruments in search for lightning activity in the atmospheres of planets in the solar system, and put them in context of previous research. Since the comprehensive book on planetary atmospheric electricity compiled by Leblanc et al. (2008), advances in remote sensing technology and telescopic optics enable detection of additional and new electromagnetic and optical emissions, respectively. Orbiting spacecraft such as Mars Express, Venus Express and Cassini yield new results, and we highlight the giant storm on Saturn of 2010/2011 that was probably the single most powerful thunderstorm ever observed in the solar system. We also describe theoretical models, laboratory spark experiments simulating conditions in planetary mixtures and map open issues.  相似文献   

16.
The science community has continued to be interested in planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System. As in the case of the Galileo entry probe, such missions are critical to the understanding not only of the individual planets, but also to further knowledge regarding the formation of the Solar System. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient to provide the desired data on its atmospheric composition. An aerocapture mission would enable delivery of a satellite to provide insight into how gravitational forces cause dynamic changes in Saturn’s ring structure that are akin to the evolution of protoplanetary accretion disks. Heating rates for the “shallow” Saturn probes, Saturn aerocapture, and sample Earth return missions with higher re-entry speeds (13–15 km/s) from Mars, Venus, comets, and asteroids are in the range of 1–6 KW/cm2. New, mid-density thermal protection system (TPS) materials for such probes can be mission enabling for mass efficiency and also for use on smaller vehicles enabled by advancements in scientific instrumentation. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet arcjet facility that was used to qualify carbon phenolic for the Galileo probe. This paper describes emerging TPS technologies and the proposed use of an affordable, small 5 MW arcjet that can be used for TPS development, in test gases appropriate for future planetary probe and aerocapture applications. Emerging TPS technologies of interest include new versions of the Apollo Avcoat material and a densified variant of Phenolic Impregnated Carbon Ablator (PICA). Application of these and other TPS materials and the use of other facilities for development and qualification of TPS for Saturn, Titan, and Sample Return missions of the Stardust class with entry speeds from 6.0 to 28.6 km/s are discussed.  相似文献   

17.
Since the Voyager mission it is known that Saturn Kilometric Radiation (SKR) is strongly influenced by external forces, i.e., the solar wind and in particular the solar wind ram pressure. Recent studies using Cassini data essentially confirmed these findings for particular periods during the first Cassini orbit of Saturn. The data coverage of SKR by the Cassini/RPWS experiment for the period of six months prior to Saturn Orbit Insertion (July 1, 2004) is rather continuous, whereas there are gaps in the solar wind plasma data. The strong correlation of SKR with the solar wind may provide an indication on the variations of the solar wind plasma, specifically during the gap periods. These periods lacking solar wind data are substituted by Ulysses solar wind data which have been propagated over ∼4 AU, applying magnetohydrodynamic propagation models. Cross correlation studies showed that Ulysses solar wind data can be taken as a substitute for missing Cassini data. The use of SKR as monitor for solar wind variations is discussed. With the present set of observations the SKR proxy lacks significant reliability.  相似文献   

18.
The intensity of the resonantly scattered Ly-α line of the gian planets depends on the scattering column length of atomic hydrogen above the methane layer and on the incident solar flux. We have obtained measurements of the Ly-α brightness of Jupiter and Saturn on December 19, 1979, with a time difference of 111 minutes, which is only slightly longer than the additional travel time for solar photons scattered at Saturn compared to those from Jupiter. This observational technique eliminates two major uncertainties — the use of different instruments and solar variability — affecting previous determinations of the relative brightness of the planets. The measured ratio of the brightness of the subsolar points is 3.0 ± 0.4 which agrees well with the ratio of the incident solar flux of 3.4. This implies approximately equal scattering column lengths of H on both planets.  相似文献   

19.
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.  相似文献   

20.
This paper compares global structures of the aurora observed at Jupiter and Earth and our understanding of the mechanisms that produce these structures. Both planets have permanent, magnetically conjugate auroral ovals, although produced by quite different mechanisms. Both are multispectral, having been observed at X-ray, ultraviolet, visible, infrared, and radio wavelengths. The brightest structures are produced by downward accelerated electron fluxes associated with upward Birkeland (magnetic-field-aligned) currents. At both planets, the auroral forms are time variable, especially at highest latitudes. The main power source for auroral emissions is planetary rotation at Jupiter, and the solar wind interaction at Earth. Thus Jupiter's auroral structures tend to be fixed with respect to magnetic (System III) longitude while Earth's are fixed with respect to local time. Earth's auroral structure is strongly dependent on the direction of the interplanetary magnetic field (IMF). At Jupiter, no IMF dependence is known, but observations have not been sufficient to show such a dependence if it exists. A unique feature of Jupiter's auroral structure, with no counterpart at Earth, is the signature of the large (Galilean) satellites and, in the case of Io, even the corotational wake of the satellite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号