首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Atmospheric radiation is one of the major factors that dominate the thermal behaviors of aerostats. A high-performance model is needed to evaluate the atmospheric radiation. Based on the atmospheric radiation database containing 24,862 data points compiled from 7 stations with the elevation from sea level to 2373 m and the reference code MODTRAN, a new atmospheric radiation model is proposed using regression and optimization software. It has excellent prediction accuracy with the coefficient of determination of 0.94, the root mean square error of 15.1 W/m2, and the mean absolute percentage error of 4.13% for the database. Comparison with the well-known existing model shows that the new model has the highest prediction accuracy. The new model predictions agree with the MODTRAN calculations at various altitudes very well, and thus it can be used for estimating the thermal performances of a high altitude aerostat.  相似文献   

2.
Solar and space radiation have been monitored using the R3D-B2 radiation risks radiometer-dosimeter on board a recent space flight on the Russian satellite Foton M2 within the ESA Biopan 5 facility mounted on the outside of the satellite exposed to space conditions. The solar radiation has been assayed in four wavelength bands (UV-C, 170–280 nm, UV-B, 280–315 nm), UV-A (315–400 nm) and PAR (photosynthetic active radiation, 400–700 nm). The data show an increasing tumbling rotation of the satellite during the mission. The photodiodes do not show a cosine response to the incident light which has been corrected. After calibration of the signals using the extraterrestrial spectrum, doses have been calculated for each orbit, for each day and for the total mission as basic data for the biological material which has been exposed in parallel in the Biopan facility. Cosmic ionizing radiation has been monitored and separated in 256 deposited energy spectra, which were further used for determination of the absorbed dose rate and flux. Basic data tables were prepared to be used by other Biopan 5 experiments. The paper summarizes the results for the Earth radiation environment at the altitude (262–304 km) of the Foton M2 spacecraft. Comparisons with the predictions of NASA Earth radiation environment experimental models AE-8 and AP-8, and the PSB97 model are also presented, which calculate the fluxes of ionizing radiation from a simulation. AP-8 is a model for trapped radiation.  相似文献   

3.
基于细观力学有限元方法对T300/5208,P75/934,P75/CE339,C6000/PMR 15,HMS/Borosilicate,P100/2024 Al六种复合材料的纵向和横向热膨胀系数进行了预报,并将预报结果与国内外常用的几种理论方法的预报结果以及试验值进行了对比,分析了各分析方法的预报精度.各分析方法对于复合材料的纵向热膨胀系数的预报结果与试验值均能很好吻合;对于横向热膨胀系数,各分析方法的预报结果相差较大.Rosen and Hashin(RH)方法与所建立的细观力学有限元分析模型的预报结果与试验值的吻合程度比其他理论方法要高,进而验证了细观力学有限元方法的可靠性.此外,基于细观力学有限元方法建立了各种材料体系热膨胀系数对纤维体积分数的响应关系,得出复合材料纤维/基体性能比对其热膨胀系数的影响,为航空航天结构先进复合材料的应用提供了技术基础支撑.  相似文献   

4.
航天器热网络模型及其系数修正方法   总被引:5,自引:0,他引:5  
叙述了目前航天器热网络模型与航天器实际换热之间的偏差,提出了利用航天器稳态热平衡试验结果进行热网络模型及其系数修正的方法。通过对某仪器舱热平衡试验数据的处理,实现了对该仪器舱热网络模型及其系数的修正,并对修正的结果进行了讨论。  相似文献   

5.
Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving current models of the space radiation environment in low Earth orbit. Reported here are predictions and comparisons with some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher than predicted.  相似文献   

6.
7.
Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year.  相似文献   

8.
The health risks associated with exposure to various components of space radiation are of great concern when planning manned long-term interplanetary missions, such as future missions to Mars. Since it is not possible to measure the radiation environment inside of human organs in deep space, simulations based on radiation transport/interaction codes coupled to phantoms of tissue equivalent materials are used. However, the calculated results depend on the models used in the codes, and it is therefore necessary to verify their validity by comparison with measured data. The goal of this paper is to compare absorbed doses obtained in the MATROSHKA-R experiment performed at the International Space Station (ISS) with simulations performed with the three-dimensional Monte Carlo Particle and Heavy-Ion Transport code System (PHITS). The absorbed dose was measured using passive detectors (packages of thermoluminescent and plastic nuclear track detectors) placed on the surface of the spherical tissue equivalent phantom MATROSHKA-R, which was exposed aboard the ISS in the Service Zvezda Module from December 2005 to September 2006. The data calculated by PHITS assuming an ISS shielding of 3 g/cm2 and 5 g/cm2 aluminum mass thickness were in good agreement with the measurements. Using a simplified geometrical model of the ISS, the influence of variations in altitude and wall mass thickness of the ISS on the calculated absorbed dose was estimated. The uncertainties of the calculated data are also discussed; the relative expanded uncertainty of absorbed dose in phantom was estimated to be 44% at a 95% confidence level.  相似文献   

9.
The Mobile Radiation Exposure Control System's (Liulin-4 type) main purpose is to monitor simultaneously the doses and fluxes at 4 independent places. It can also be used for personnel dosimetry. The system consists of 4 battery-operated 256-channel dosimeters-spectrometers. We describe results obtained during the calibrations of the spectrometers at the Cyclotron facilities of the University of Louvain, Belgium and of the National Institute of Radiological Sciences-STA, Chiba, Japan with protons of energies up to 70 MeV. The angular sensitivities of the devices are studied and compared with Monte-Carlo predictions. We also present the results obtained at the HIMAC accelerator with 500 MeV/u Fe ions and at the CERN high energy radiation reference fields. Records made during airplane flights are shown and compared with the predictions of the CARI-6 model.  相似文献   

10.
In the inner annular gap (IAG) model the γ-ray radiation sources are suggested to be located close to the null charge surface (NCS). A method to explore two geometric parameters (κ, λ) of the IAG model is given in this paper. Pulsar population statistics are proposed to test the radiation locations of γ-ray pulsars. Within the IAG model, predictions for the GLAST observation of γ-ray pulsars are also made.  相似文献   

11.
The Space Radiation (SPACERAD) experiments on the Combined Release and Radiation Effects Satellite (CRRES) gathered 14 months of radiation particle data in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. When compared to the NASA radiation belt models AP8 and AE8, the data show the proton model (AP8) does not take into account a second belt formed after major solar flare/shock injection events, and the electron model (AE8) is misleading, at best, in calculating dose in near-Earth orbits. The second proton belt, although softer in energy than the main proton belt, can produce upsets in proton sensitive chips and would produce significant dose in satellites orbiting in it. The MeV electrons observed on CRRES show a significant particle population above 5 MeV (not in the AE8 model) which must be included in any meaningful dose predictions for satellites operating between L-shells of 1.7 and 3.0 RE.  相似文献   

12.
Calculations to predict the radiation environment for spacecraft in low earth orbit sometimes ignore the contribution from secondary radiation products. However, the contribution of secondaries, particularly neutrons, on heavy spacecraft or in planetary bodies can be of concern for biological systems. The Shuttle Activation Monitor (SAM) and Cosmic Radiation Effects and Activation Monitor (CREAM) experiments provide valuable data on secondary (as well as primary) radiation effects. Comparisons have been made between induced activity from flight-exposed samples, induced activity in a ground-irradiated sample, and Monte Carlo-derived predictions with and without secondaries. These comparisons show that for a flight-exposed sample, predictions which omit the secondary contribution result in a spectrum that is too low by a factor of 2. The addition of the secondaries results in a predicted spectrum that closely matches the measured data.  相似文献   

13.
为提高试验精度,减小电磁兼容(EMC)半电波暗室中被试品(EUT)的电磁辐射发射试验点位对测试结果的影响,研究了不同试验点位对半电波暗室典型谐振频率电磁信号辐射发射的影响规律。采用几何光学、一致性绕射理论和多路径效应算法对不同试验点位,暗室典型谐振频率电磁信号的传输过程进行数学建模,剔除直射场强影响,综合考虑信号传输过程中产生的反射、折射、绕射和多径等电磁传播效应,给出了数学模型和计算公式。将数学传播模型与剔除直射场影响的试验实测模型计算结果进行比对,验证了数学模型的有效性。该研究为修正被试品在暗室内不同点位进行辐射发射试验的测试结果提供了理论依据,有助于提高被试品电磁辐射发射试验的测试精度。  相似文献   

14.
The space radiation environment is a mixed field consisting of different particles having different energies, including high charge and energy (HZE) ions. Conventional measurements of absorbed doses may not be sufficient to completely characterise the radiation field and perform reliable estimates of health risks. Biological dosimetry, based on the observation of specific radiation-induced endpoints (typically chromosome aberrations), can be a helpful approach in case of monitored exposure to space radiation or other mixed fields, as well as in case of accidental exposure. Furthermore, various ratios of aberrations (e.g. dicentric chromosomes to centric rings and complex exchanges to simple exchanges) have been suggested as possible fingerprints of radiation quality, although all of them have been subjected to some criticisms. In this context a mechanistic model and a Monte Carlo code for the simulation of chromosome aberration induction were developed. The model, able to provide dose-responses for different aberrations (e.g. dicentrics, rings, fragments, translocations, insertions and other complex exchanges), was further developed to assess the dependence of various ratios of aberrations on radiation quality. The predictions of the model were compared with available data, whose experimental conditions were faithfully reproduced. Particular attention was devoted to the scoring criteria adopted in different laboratories and to possible biases introduced by interphase death and mitotic delay. This latter aspect was investigated by taking into account both metaphase data and data obtained with Premature Chromosome Condensation (PCC).  相似文献   

15.
多喷嘴引射器性能计算模型   总被引:3,自引:0,他引:3  
本文对多喷嘴引射器的工作过程进行分析,给出了引射器性能参数的理论计算方法,得出影响引射器性能的影响。经试验验证该计算方法有较高的精度,为引射器的设计提供了理论依据。  相似文献   

16.
The electromagnetic drift plays an important role in low-latitude storm time ionospheric dynamics. In this study we attempt to utilize the electric field data into ionospheric predictions by using support vector machine (SVM), a promising algorithm for small-sample nonlinear regressions. Taking the disturbance electric field data as input, different SVMs have been trained for three seasonal bins at two stations near the north crest of the Equatorial Ionization Anomaly (EIA). Eighteen storm events are used to check out their predicting abilities. The results show fairly good agreement between the predictions and observations. Compared with STORM, a widely used empirical correlation model, the SVM method brings a relative improvement of 23% for these testing events. Based on this study we argue that the SVM method can improve the storm time ionospheric predictions.  相似文献   

17.
The mean free path for nuclear interactions of galactic cosmic-rays is comparable to shielding and tissue thicknesses present in human interplanetary exploration, resulting in a significant fraction of nuclear reaction products at depth. In order to characterize the radiation field, the energy spectrum, the angular distribution, and the multiplicity of each type of secondary particles must also be known as a function of depth. Reactions can take place anywhere in a thick absorber; therefore, it is necessary to know these quantities as a function of particle energy for all particles produced. HZE transport methods are used to predict the radiation field; they are dependent on models of the interaction of man-made systems with the space environment to an even greater extent than methods used for other types of radiation. Hence, there is a major need to validate these transport codes by comparison with experimental data. The most cost-effective method of validation is a comparison with ground-based experimental measurements. A research program to provide such validation measurements using neon, iron and other accelerated heavy ion beams will be discussed and illustrated using results from ongoing experiments and their comparison with current transport codes. The extent to which physical measurements yield radiobiological predictions will be discussed.  相似文献   

18.
针对含随机参数的互连线缆电磁辐射计算问题,提出了一种基于混沌多项式展开和偶极子近似法的多导体传输线电磁辐射统计分析方法。利用正交多项式的性质对随机多导体传输线方程进行展开,结合边界条件求解得到传输线沿线电流,利用偶极子近似法和镜像法计算传输线电流引起的总辐射。仿真结果验证了所提方法的准确性,与传统的蒙特卡罗方法相比,计算效率得到大幅度提高。所提方法对于预测系统内含随机参数的线缆辐射场,评估线缆电磁辐射和检验系统性能指标,有一定的参考价值。   相似文献   

19.
Future manned missions beyond low earth orbit require accurate predictions of the risk to astronauts and to critical systems from exposure to ionizing radiation. For low-level exposures, the hazards are dominated by rare single-event phenomena where individual cosmic-ray particles or spallation reactions result in potentially catastrophic changes in critical components. Examples might be a biological lesion leading to cancer in an astronaut or a memory upset leading to an undesired rocket firing. The risks of such events appears to depend on the amount of energy deposited within critical sensitive volumes of biological cells and microelectronic components. The critical environmental information needed to estimate the risks posed by the natural space environments, including solar flares, is the number of times more than a threshold amount of energy for an event will be deposited in the critical microvolumes. These predictions are complicated by uncertainties in the natural environments, particularly the composition of flares, and by the effects of shielding. Microdosimetric data for large numbers of orbits are needed to improve the environmental models and to test the transport codes used to predict event rates.  相似文献   

20.
Described is the Liulin-5 active dosimetric telescope designed for measurement of the space radiation dose depth-distribution in a human phantom on the Russian Segment of the International Space Station (ISS). The Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The MATROSHKA-R project is aimed to study the depth-dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is a long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different compartments. Energy deposition spectra, linear energy transfer spectra, and flux and dose rates for charged particles will be measured simultaneously with near real time resolution at different depths of the phantom by means of three silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, which verify the models of radiation environment in low Earth orbit. Presented are the test results of the prototype unit. Liulin-5 will be flown on the ISS in the year 2003.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号