首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A single-frequency lidar, using aerosol scattering as an informative component, is the simplest and reliable facility for remote sensing of the atmosphere. The information on vertical distribution of atmospheric aerosol which can be obtained using such a lidar is necessary for investigating the physics of atmospheric processes and forecast of optical state of the atmosphere. At the same time, the interpretation of data on single-frequency sounding is associated with some difficulties of fundamental character, mainly due to insufficient software of the experiment. Under such conditions the problems of optimal processing of lidar returns aiming at extracting the useful information on aerosol are of great importance, especially if one takes into account the hindering effects of atmospheric background and optical noises. This paper presents a statistical approach to this problem, and the possibilities of single-frequency sounding from space are analyzed.  相似文献   

2.
Since the fall of 1978, two Earth-orbiting spacecraft sensors, SAM II, for Stratospheric Aerosol Measurement II, and SAGE, for Stratospheric Aerosol and Gas Experiment have been monitoring the global stratospheric aerosol. These experiments use the Sun as a source to make Earth-limb extinction measurements during each spacecraft sunrise and sunset. This paper describes the global aerosol data base (climatology) that is evolving. Seasonal and hemispheric variations such as the springtime layer expansion with warming temperatures and the local wintertime polar stratospheric clouds (PSC's) will be described. The PSC's enhance extinction by up to two orders of magnitude and optical depths by as much as an order of magnitude over the background 1000 nm values of about 1.2 × 10?4 km?1 and 1.3 × 10?3, respectively. The detection and tracking of a number of volcanoes whose effluents penetrated the tropopause are also described. The mass of new aerosol injected into the stratosphere from each volcano is estimated. The May 1980 eruption of Mount St. Helens, for example, produced about 0.32 × 109 kg of new stratospheric aerosol enhancing the Northern Hemispheric aerosol by more than 100 percent.  相似文献   

3.
The Indo-Gangetic basin (IGB) extends 2000 km in length along NW–SE and has 400 km width, in the north the basin is bounded by towering Himalaya. High aerosol optical depth (AOD) is observed over the IGB throughout the year. The Himalaya restricts the transport of aerosols across Tibet and China. We have used ground based Kanpur and Gandhi College Aerosol Robotic Network (AERONET) stations and Multiangle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) Terra level-3 AOD products for the years 2005–2009 to study the variability of aerosol over the Indo-Gangetic (IG) plains. An increase in both satellite-derived as well as ground observed aerosol loading during 2005–2009 has been found over major cities located in the IG plains. The correlation coefficients between AERONET and MISR data are found to be 0.70, 0.36 0.82, in contrast the correlation coefficients between AERONET and MODIS 0.49, 0.68, and 0.43, respectively during summer, winter and monsoon seasons. The AOD estimation using MISR is found to be close to AERONET data during summer and monsoon seasons, in contrast MODIS estimation is better during winter season.  相似文献   

4.
A network of multi wavelength solar radiometer (MWR) stations has been in operation since the 1980s in India for measurement of aerosol optical depth (AOD). This network was augmented recently with the addition of a large number of stations located across the length and breath of India covering a variety of climate regimes. The spectral and temporal variations of aerosol optical depths observed over Dibrugarh located in the North East of India (27.3°N, 94.5°E) are investigated by analyzing the data obtained from a MWR during October 2001–September 2003 using the Langley technique. AOD varies with time of the day, month of the year and season. From January to April and October to December, aerosol optical depth decreases with wavelength whereas during May–September aerosol optical depth has been found to be nearly independent of wavelengths. AOD is higher during pre-monsoon season (March–May) and lower in the monsoon (June–September) season at about all wavelengths. The temporal variation of AOD over Dibrugarh have also been compared with those reported from selected locations in India.  相似文献   

5.
Direct radiative forcing from black carbon aerosols over urban environment   总被引:1,自引:0,他引:1  
There is growing evidence that the earth’s climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents and motor vehicle exhausts, etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC indicate high BC concentrations during 6:00–9:00 and 19:00–23:00 h. Weekday variations of BC concentrations increase gradually from Monday to Wednesday and gradually decrease from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to the scavenging by air. The fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface is −33 Wm2 and at the top of the atmosphere (TOA) above 100 km it is observed to be +9 Wm−2. The results have been discussed in detail in the paper.  相似文献   

6.
Principal aspects of the effect of aerosols on climate are discussed and the possibilities of obtaining a climatic data set of global aerosols are analyzed. Based on the analysis of space images, new data have been obtained on gigantic dust outbreaks in various regions of the Earth. It has been shown that dust outbreaks can propagate over hundreds and sometimes thousands of kilometers. The western Sahara - Atlantic Ocean is the major region of propagation of these outbreaks. The continent-to-continent trajectories of dust clouds have been discovered (from Africa to the coast of America, from Central Asia to the Pacific Ocean). Maps of the sources of strong dust transformations have been studied and drawn. In particular, an anthropogenic dust source has been found out on the northeastern coast of the Aral Sea. A striped mesostructure of dust formations has been analyzed, determined by both the inhomogeneous surface and peculiarities of the eddy dust transport. The techniques have been discussed in detail for retrieving the parameters of aerosol size distribution and the vertical profiles of the coefficients of aerosol extinction in the stratosphere and lower mesosphere from the data on the brightness of the twilight and daytime horizon as well as occultation measurements of solar radiation attenuation by the atmosphere.The difficulty of reliably predicting possible environmental changes arises both from the problems of estimating complex interactions of numerous processes and from a lack of information concerning various environmental parameters. For example, an important factor in present day climatic changes is the increased dust content of the atmosphere due to man's activities. However, a reliable estimate of this influence is found to be impossible due to the absence of definitive data on the global distribution of atmospheric dust and the properties of dust in various parts of the world [4,5,13–15]. The impact of aerosols on climate has been discussed in detail in a number of monographs [12–15].Observations from space have opened up new possibilities for studying atmospheric dust. For this purpose, both the imagery and spectrometry of the Earth's atmosphere from space are used. Rather attractive are the prospects for laser sounding [1].  相似文献   

7.
The SAM II and SAGE satellite systems have provided to date more than 5 years and almost 3 years, respectively, of data on atmospheric aerosol profiles on a near-global scale. Studies with these unique data sets are developing a global aerosol climatology for the first time and have shown the existence and quantification of polar stratospheric clouds (PSC's) and tropical stratospheric cirrus. In addition, a tropospheric cirrus climatology is evolving. Since these two experiments were launched, a series of large volcanic eruptions have occurred which have greatly impacted the stratospheric aerosol loading. The aerosol layer produced by the eruption of El Chichon, for example, increased the 30 mb temperatures in the northern tropics by as much as 4°C for 6 months after the eruption. This paper will describe in detail, from a climate perspective, the evolving aerosol and cloud climatologies as a function of space and time, and show the stratospheric dynamics of volcanic injections and their enhancements on stratospheric optical depth and mass loading.  相似文献   

8.
A numerical 2-D zonally averaged dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2, CH4, and N2O in the recovery of the Earth’s ozone layer after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. A weakness in efficiencies of all catalytic cycles of the ozone destruction due to cooling of the stratosphere caused by greenhouse gases is shown to be a dominant mechanism of the impact of the greenhouse gases on the ozone layer. Numerical experiments show that the total ozone changes caused by greenhouse gases will be comparable in absolute value with the changes due to chlorine and bromine species in the middle of the 21st century. Continuous anthropogenic growth of CO2 will lead to a significantly faster recovery of the ozone layer. In this case, the global total ozone in the latitude range from 60°S to 60°N will reach its undisturbed level of 1980 by about 2040. If the CO2 growth stops, the global total ozone will reach this level only by the end of the century.  相似文献   

9.
Remote sensing of aerosol and radiation from geostationary satellites   总被引:2,自引:0,他引:2  
The paper presents a high-level overview of current and future remote sensing of aerosol and shortwave radiation budget carried out at the US National Oceanic and Atmospheric Administration (NOAA) from the US Geostationary Operational Environmental Satellite (GOES) series. The retrievals from the current GOES imagers are based on physical principles. Aerosol and radiation are estimated in separate processing from the comparison of satellite-observed reflectances derived from a single visible channel with those calculated from detailed radiative transfer. The radiative transfer calculation accounts for multiple scattering by molecules, aerosol and cloud and absorption by the major atmospheric gases. The retrievals are performed operationally every 30 min for aerosol and every hour for radiation for pixel sizes of 4-km (aerosol) and 15- to 50-km (radiation). Both retrievals estimate the surface reflectance as a byproduct from the time composite of clear visible reflectances assuming fixed values of the aerosol optical depth. With the launch of GOES-R NOAA will begin a new era of geostationary remote sensing. The Advanced Baseline Imager (ABI) onboard GOES-R will offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on the NASA Earth Observing System (EOS) satellites. The ABI aerosol algorithm currently under development uses a multi-channel approach to estimate the aerosol optical depth and aerosol model simultaneously, both over water and land. Its design is strongly inspired by the MODIS aerosol algorithm. The ABI shortwave radiation budget algorithm is based on the successful GOES Surface and Insolation Product system of NOAA and the NASA Clouds and the Earth’s Radiant Energy System (CERES), Surface and Atmospheric Radiation Budget (SARB) algorithm. In all phases of the development, the algorithms are tested with proxy data generated from existing satellite observations and forward simulations. Final assessment of the performance will be made after the launch of GOES-R scheduled in 2012.  相似文献   

10.
The ability to measure tropospheric aerosols over ocean surfaces has been demonstrated using several different satellite sensors. Landsat data originally showed that a linear relationship exists between the upwelling visible radiance and the aerosol optical thickness (about 90% of this thickness is generally in the lowest 3 km of the atmosphere). Similar relationships have also been found for sensors on GOES, NOAA-5 and NOAA-6 satellites. The linear relationship has been shown theoretically to vary with the aerosol properties, such as size distribution and refractive index, although the Landsat data obtained at San Diego showed little variability in the relationship. To investigate the general applicability of the technique to different locations, a global-scale ground-truth experiment was conducted in 1980 with the AVHRR sensor on NOAA-6 to determine the relationship at ten ocean sites around the globe. The data for four sites have been analyzed, and show excellent agreement between the aerosol content measured by the AVHRR and by sunphotometers at San Diego, Sable Island and San Juan, but at Barbados, the AVHRR appears to overestimate the aerosol content. The reason for the different relationship at the Barbados site has not been definitely established, but is most likely related to problems in interpreting the sunphotometer data rather than to a real overestimation by the AVHRR. A preliminary analysis of AVHRR Channel 1 (0.65 μm) and Channel 2 (0.85 μm) radiances suggest that useful information on the aerosol size distribution may also be obtained from satellite observations.  相似文献   

11.
A two-dimensional dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the changes of the Earth's ozone layer occurred during the 21st and 22nd solar cycles. The calculated global total ozone changes in the latitude range 60°S—60°N caused by 11-year variation of solar UV radiation, volcanic eruptions, and anthropogenic atmospheric pollution containing CO2, CH4, N2O and chlorine and bromine species are in a rather good agreement with the observed global ozone trend. The calculations show that the anthropogenic pollution of the atmosphere is a main reason of the ozone depletion observed during the last two solar cycles. However, the 11-year solar UV variation as well as volcanic eruptions of El Chichon and Mt. Pinatubo also gave a significant contribution to the observed global ozone changes.  相似文献   

12.
13.
空间物理学是人类进入空间时代后迅速发展起来的一门新兴的多学科交叉的前沿基础学科。其将太阳和太阳风控制的日球层空间作为一个系统,研究太阳/太阳风与行星/彗星的上层大气、电离层、磁层乃至星际介质之间的相互作用。空间物理学从本质上讲是一门实验科学,空间物理探测是空间物理学发展的基础。进入新世纪,随着空间基础设施和人类高技术活动的日益频繁,空间物理学进入新的发展阶段,强调科学与应用的密切结合。近年来,空间物理学取得了一系列重要进展。本文对接国家自然科学基金委地球科学部“宜居地球-地球系统科学”的顶层战略设计,梳理总结近年来空间物理各学科发展动态和趋势,凝练中国空间物理学未来发展的重点领域,优化学科布局,推进空间物理各学科的高质量发展。  相似文献   

14.
The ram current to ion traps and the insensitivity of ion conductivity to compressibility provide the basis of robust techniques for middle atmosphere measurements. Gerdien condensers are more difficult to implement but provide more information. Mesospheric electrical conductivity shows many orders of magnitude variability, with depressions below gas phase model values indicating dominance by aerosol particles. The mobility of these ions has been directly measured and indicates particles of thousands of AMU. Large mesospheric fields have come into question, and diagnostic measurements show that many such measurements may be artifacts. However, some measurements of V/m fields with symmetrical and redundant sensors appear to be real. These fields complicate the “mapping” picture of electrical coupling and may also modulate the transport of aerosol particles. They are probably related to neutral atmosphere dynamics and/or the aerosol particles. Lightning couples much more energy to the middle atmosphere and above than previously suspected, primarily in the ELF-ULF range. There are many important unanswered questions in this relatively unexplored frontier area which may be answered with low cost balloon and sounding rocket experiments.  相似文献   

15.
China's manned spaceflight missions have been introduced briefly, and the research planning of space sciences for China's Space Station (CSS) has been presented with the topics in the research areas, including:life science and biotechnology, microgravity fluid physics and combustion science, space material science, fundamental physics, space astronomy and astrophysics, earth sciences and application, space physics and space environment, experiments of new space technology. The research facilities, experiment racks, and supporting system planned in CSS have been described, including:multifunctional optical facility, research facility of quantum and optic transmission, and a dozen of research racks for space sciences in pressurized module, etc. In the next decade, significant breakthroughs in space science and utilization will hopefully be achieved, and great contributions will be made to satisfy the need of the social development and people's daily life.   相似文献   

16.
Meteor storms are of concern to satellite operators because they are a natural impact hazard. Little is known about their cause and effect. Meteor storms are rare and have never been studied by modern techniques. Now, the upcoming Leonid returns of November '98 and '99 offer a once-in-a-lifetime opportunity to gather data that can help assess the impact hazard of meteor storms and provide a wealth of data on the physics and chemistry of meteoroids accreting into the Earth's atmosphere. Three months before the Nov. '98 return, we here give an update of what to expect and what observing efforts are going to be made.  相似文献   

17.
Significant progress has been made by Chinese scientists in research of interplanetary physics during the recent two years (2018-2020). These achievements are reflected at least in the following aspects:Activities in solar corona and lower solar atmosphere; solar wind and turbulence; filament/prominence, jets, flares, and radio bursts; active regions and solar eruptions; coronal mass ejections and their interplanetary counterparts; other interplanetary structures; space weather prediction methods; magnetic reconnection; Magnetohydrodynamic (MHD) numerical modeling; solar energetic particles, cosmic rays, and Forbush decreases; machine learning methods in space weather and other aspects. More than one hundred and forty papers in the academic journals have been published in these research directions. These fruitful achievements are obtained by Chinese scholars in solar physics and space physics either independently or through international collaborations. They greatly improve people's understanding of solar activities, solar eruptions, the corresponding space weather effects, and the Sun-Earth relations. Here we will give a very brief review on the research progress. However, it must be pointed out that this paper may not completely cover all achievements in this field due to our limited knowledge.   相似文献   

18.
A non-empirical algorithm is presented to retrieve the optical depth in the 750–1250 cm−1 spectral range, of aerosol located in the boundary layer over the ocean, from nadir high-resolution radiance spectra in the thermal infrared. The algorithm is based on a line-by-line radiative transfer forward model and used the Optimal Estimation Method for the retrieval. Its performance strongly depends on the quality of the a priori temperature and H2O atmospheric profiles. To demonstrate the relevance of the algorithm, distributions of maritime aerosol parameters have been retrieved from IMG/ADEOS data for December 1996, using the algorithm with the LBLRTM radiative transfer code, and ERA40 (ECMWF) a priori atmospheric profiles and surface conditions.  相似文献   

19.
In recent years there has been considerable research in undergraduate physics education regarding the application to classroom instruction of techniques that are generally referred to as active engagement techniques. However, in very few cases have such pedagogical strategies been applied to graduate-level instruction. In this paper we describe an innovative application of a variety of active engagement techniques at the graduate summer school conducted by the Center for Integrated Space Weather Modeling, a Science and Technology Center funded by the National Science Foundation. We believe that the model presented here can serve as a valuable guide to other group contemplating space physics education at all levels, as well as graduate education generally.  相似文献   

20.
In the past two years, many progresses have been made in magnetospheric physics by using the data of Double Star Program, Cluster, THEMIS and RBSP missions, or by computer simulations. This paper briefly reviews these works based on papers selected from the 126 publications from March 2012 to March 2014. The subjects cover various sub-branches of magnetospheric physics,including geomagnetic storm, magnetospheric substorm and magnetic reconnection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号