首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We present preliminary results from analyses of hard X-ray and optical observations of a soft X-ray selected sample. We created a small but complete sample with 20 of the softest and brightest objects with low Galactic absorption from the ROSAT bright soft X-ray selected radio-quiet AGN sample. This sample consists of 10 narrow-line Seyfert 1 galaxies and 10 broad-line Seyfert galaxies. We analyze ASCA data in the 0.6–10 keV band and optical spectra from ground-based telescopes. We investigate the photon indices in the hard X-ray band, soft excesses in the ASCA band, and optical emission line properties. The photon indices in the 2–10 keV band are nominal for both narrow-line Seyfert 1 galaxies and broad-line Seyfert 1 galaxies in each class compared with other heterogeneous samples. All of the narrow-line Seyfert 1 galaxies show soft excesses, but this component seems to be less significant for broad-line Seyfert 1 galaxies. There seems to be a trend of steeper X-ray spectra to be accompanied by narrower Hβ for narrow-line Seyfert 1 galaxies, but this is not extended to the larger velocity width regime of broad-line Seyfert 1 galaxies, and no clear trend is seen among them.  相似文献   

2.
We have searched for anisotropic X-ray bremsstrahlung photon production from relativistic electrons by studying the heliocentric angular dependence of 53 flares detected at energies above 300 keV. We have found no evidence for a higher rate of detectable flares near the limb at the 80% confidence level. This result implies that the X-ray directivity as defined by the ratio of photon intensity at 75° and 0° of heliocentric angle is less than 1.5 above 300 keV and strongly rejects any flare model predicting X-ray production from a radial “beam” of energetic electrons.  相似文献   

3.
A large (1455 cm2) hard X-ray telescope was successfully launched aboard a stratospheric balloon on October 4, 1980. During this flight four galactic X-ray sources were observed, namely the transient recurrent X-ray pulsar A0535+26, the Crab Nebula, Cygnus X-1 and X Persei. Here we report the results on the latter two sources. From Cygnus X-1 we measured a photon flux in the band 30 to 200 keV, of 3.5 × 10?2 photons cm?2 which is 6.5 times lower than that recieved from the source in a “low” intensity state in the same energy band. In addition, the photon spectrum in the same energy band was very soft and consistent with a power law with photon index α = 2.71 ± 0.14. Even if a simultaneous observation of the source at lower energies was not available, our data strongly suggest that we observed the source during a “high” intensity state. We report also positive detection in the band 30 to 200 keV of the low luminosity X-ray pulsar X Persei. In its spectrum we confirm the presence of a hard X-ray tail consistent with a power law (photon index α = 2.17 ± 0.42).  相似文献   

4.
The advent of improved γ-ray telescopes which incorporate high angular resolution imaging properties and adequate sensitivity will advance this branch of astronomy from the discovery phase to the exploratory phase. As in other fields, such as radio and X-ray astronomy, which have recently undergone this change, it will prove a fascinating era. The recent development of position sensitive γ-ray detection planes operated in conjunction with a suitable coded aperture mask have made γ-ray telescopes feasible which are capable of generating γ-ray images of the sky with a precision of 1 arc minute over the photon energy range 0.1 to 10 MeV. With a sensitivity of at least 1–10 milliCrab and scintillation standard spectral resolution not only can a large number of discrete γ-ray objects be identified and studied in detail but nuclear γ-ray line images of extended objects such as the Galactic Plane, Cloud Complexes, and supernovae remnants may be generated by this class of astronomical instrument.  相似文献   

5.
SAX is an Italian X-ray satellite with a Dutch contribution that will be placed in orbit in 1994. The prime scientific object of SAX is to cover an energy bandwidth that ranges from 0.1 keV up to 200 keV. Among other instruments, SAX will consist of two X-ray Wide Field Cameras built by the Space Research Organisation Netherlands at Utrecht. The WFCs are based on the coded mask principle, the reconstruction of the image takes place on ground. The field of view is 20 degrees square full width at half maximum (FWHM), the angular resolution 5 arcminutes (FWHM) and the energy band ranges from 1.8 to 30 keV with a resolution of 18% at 6 keV. The sensitive area is 200 cm2 at 6 keV. The mask pattern is based on a pseudo random array with 255 × 257 elements of 1 mm2, 50% of which are transparent.  相似文献   

6.
The EXCEDE III sounding rocket flight of April 27, 1990 used a 18 Ampere 2.5 keV electron beam to produce an artificial aurora in the region 90 to 115 km. A “daughter” sensor payload remotely monitored the low-energy X-ray spectrum while scanning photometers measured the spatial profile of prompt emissions of N2+ (1N) and N2 (2P) transitions (3914Å and 3805Å, respectively). Two Ebert-Fastie spectrometers measured the spectral region from 1800 to 8000Å. On the “mother” accelerator payload, the return current electron differential energy spectra were monitored by an electrostatic analyzer (up to 10 keV) and by a retarding potential analyzer (0 eV to 100 eV). We present an overview of the results from this experiment.  相似文献   

7.
Active regions show many short-lived emissions in the 3.5 – 5.5 keV range that are 100 to 1000 times weaker than “normal” X-ray flares. The hypothesis that they may well be miniflares is supported by the simultaneous occurrence of 2 Hα-subflares at the site of weak X-ray sources.  相似文献   

8.
The High Energy X-ray spectrometer (HEX) on Chandrayaan-1 was designed to study the photon emission in the range of 30–270 keV from naturally occurring radioactive decay of 238U and 232Th series nuclides from the lunar surface. The primary objective of HEX was to study the transport of volatiles on the lunar surface using radon as a tracer and mapping the 46.5 keV line from 210Pb, a decay product of 222Rn. HEX was tested for two days during the commissioning phase of Chandrayaan-1 and performance of all sub systems was found to be as expected. HEX started collecting science data during the first non-prime imaging season (February–April, 2009) of Chandrayaan-1. Certain anomalies persisted in this data set and the early curtailment of Chandrayaan-1 mission in August, 2009, did not allow any further operation of HEX. Despite these issues, HEX provided the first data set for 30–270 keV continuum emission, averaged over a significant portion of the lunar surface, including the polar region.  相似文献   

9.
10.
能量在0.1~1keV范围的软X射线辐射在空间科学任务中具有重要应用.飞行前的辐射定标试验及地面辐射定标系统采用传统单色仪分光时,由于波长的整数倍关系带来的高次谐波污染问题非常严重.高次谐波在光束中的占比严重影响了软X射线探测仪器的定标数据精度.本文探讨了无谐波单极衍射技术在产生具有高单色性能的软X射线光束中的应用,基于单极衍射光栅技术实现软X射线无谐波单色仪设计.软X射线无谐波单色仪应用于空间辐射定标系统时能够将高次谐波占比抑制到0.3%以下,满足空间软X射线科学仪器高精度辐射定标试验对高次谐波抑制的要求.  相似文献   

11.
The sounding rocket POLAR 5 carried a 10 keV electron accelerator and various diagnostic instruments in a mother-daughter configuration. Onboard wave receivers recorded several types of VLF wave phenomena directly associated with the operation of the accelerator, with delays from 5 to 50 ms after the injection of the electrons. These delayed after-effects range from broadband noise, f > 3 kHz, observed above 170 km, through narrow band emissions at 2 and 5.6 kHz which appeared when the rocket crossed a region with precipitation of energetic electrons, to emissions covering frequencies from 3–4 to well above 100 kHz observed within the E-region (150-95 km). The latter was also associated with apparent changes in electron density. The observed emission properties indicate that the region perturbed by the beam and the neutralizing return current to the daughter may be a favoured generation region.  相似文献   

12.
A more appropriate title for this talk would have been “Measurements of Large Scale Structure from X-ray Background Fluctuations”. While it has long been recognized that the X-ray Background (XRB) is primarily of a cosmological origin (with z < a few), it has recently become apparent that surface brightness fluctuations in the surveys of the XRB can be used to trace the distribution of matter in much the same way as complete catalogs of individual objects. The distance which is probed is related to the angular resolution of the detector; for the HEAO-1 A2 experiment, which provides the best all-sky data base for the XRB in the 2–20 keV band, the effective depth is a few 100 Mpc.  相似文献   

13.
The ROSAT mission, which is currently being prepared in W.-Germany, will perform the first soft X-ray all-sky survey by means of a large imaging X-ray telescope. Detailed calculations under the cost, volume and mass constraint of the satellite being a Shuttle payload have led to a design of the imaging optics with optimized geometry. The mirror system is of the Wolter type I configuration and includes four nested shells with a maximum aperture of 835 mm and a focal length of 2400 mm. The on-axis angular resolution of the mirror assembly has been specified to 5 arcsec with a scattering level as low as 3% for single reflection at 1.5 keV photon energy. Construction and technology studies have been completed by now and manufacturing of the first mirror shell has begun.  相似文献   

14.
The Broad Band X-Ray Telescope (BBXRT) was designed to perform sensitive, moderate resolution spectroscopy of cosmic X-ray sources in the 0.3–10 keV band from the Space Shuttle. During its nine-day flight in December, 1990, the BBXRT observed a variety of supernova remnants and related objects. We present results from some of these observations, emphasizing the ability of the BBXRT to perform spatially-resolved spectroscopy. The improved spectral resolution and efficiency over previous instruments makes possible measurements of previously undetectable lines, and the broad bandpass allows simultaneous measurements of lines from oxygen through iron.  相似文献   

15.
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.  相似文献   

16.
Three flights of rocket borne electron accelerators have yielded some results concerning the Beam Plasma Discharge (BPD). The first flight, E||B, from Churchill carrying an accelerator of 2 and 4 keV electrons, produced a spectrum of whistler mode waves which was identical with that produced in a large vacuum chamber, and which we know to be an indicator of BPD. The second, Echo V, launched from Poker Flat, Alaska, carrying an accelerator of 25–35 keV electrons, produced wave emissions at 3–3.5 MHz observed on the ground. Our interpretation is that BPD was not or was weakly produced. In the third flight, NB3-II launched from Churchill with an accelerator of 2, 4 and 8 keV electrons, wave emissions well above the ambient plasma frequency were observed from a separated payload, but very close to the beam, and are interpreted as demonstrating BPD.  相似文献   

17.
X-ray observations indicate that the Galactic black hole Sgr A is inactive now, however, we suggest that Sgr A can become active when a captured star is tidally disrupted and matter is accreted into the black hole. Consequently the Galactic black hole could be a powerful source of relativistic protons with a characteristic energy ∼1052 erg per capture. The diffuse GeV and TeV γ-rays emitted in the direction of the Galactic Center (GC) are the direct consequences of p–p collisions of such relativistic protons ejected by very recent capture events occurred ?105 yr ago. On the other hand, the extended electron-positron annihilation line emission observed from GC is a phenomenon related to a large population of thermalized positrons, which are produced, cooled down and accumulated through hundreds of past capture events during a period of ∼107 yr. In addition to explaining GeV, TeV and 511 keV annihilation emissions we also estimate the photon flux of several MeV resulting from in-flight annihilation process.  相似文献   

18.
Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1–5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ∼1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.  相似文献   

19.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

20.
Observation of two flares obtained with the Solar Maximum Mission spectrometers indicate that at flare onset the emission in soft (3.5 – 8 keV) and hard (16 – 30 keV) X-rays is predominant at the footpoints of the flaring loops. Since, at the same time, blue-shifts are observed in the soft X-ray spectra from the plasma at temperature of 107 K, we infer that material is injected at high velocity into the coronal loops from the footpoints. These areas are also the sites of energy deposition, since their emission in hard X-rays is due to non-thermal electrons penetrating in the denser atmosphere. Hence, chromospheric evaporation occurs where energy is deposited. During the impulsive phase, the configuration of the flare region changes indicating that the flaring loop is progressively filled by hot plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号