首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the Nimbus 7 LIMS experiment was to sound the composition and structure of the upper atmosphere and provide data for study of photochemistry, radiation, and dynamics processes. Vertical profiles were measured of temperature and ozone (O3) over the 10-km to 65-km range and water vapor (H2O), nitrogen dioxide (NO2), and nitric acid (HNO3) over the 10-km to ~50-km range. Latitude coverage extended from 64°S to 84°N. Several general features of the atmosphere have emerged from data analyses thus far. Nitrogen dioxide exhibits rapid latitudinal variations in winter and shows hemispheric asymmetry with generally higher vertical column amount in the summer hemisphere. HNO3 data show that this gas is highly variable with altitude, latitude, and season. Smallest mixing ratios occur in the tropics, and the largest values occur in the high latitude winter hemisphere. The results show that O3, NO2, and HNO3 are strongly affected during a stratospheric warming. There is a persistently low water vapor mixing ratio in the tropical lower stratosphere (~2–3 ppmv), a poleward gradient at all times in the mission, and evidence of increasing mixing ratio with altitude at tropical and middle latitudes.  相似文献   

2.
The observation of infrared absorption lines by means of a grille spectrometer on board Spacelab 1 allows the determination of Co2 and CO in the low thermosphere and in the middle atmosphere. Equal abundances of CO and CO2 are found at 115 ± 5 km altitude. CO2 is observed to depart from its homospheric volume mixing ratio near 100 km, dropping by a factor of 10,15 km higher. The CO largest number density is observed near 70 km altitude, close to the H Lyman alpha photoproduction peak.The analysis of one run dedicated to the observation of water vapor shows a middle atmospheric mixing ratio of this species within the limits : 3 to 8 ppmv up to 70 km altitude, with the indication of an increase from 30 to 50 km altitude. The H2O mixing ratio drops very rapidly above 70 km.The comparison of the results from strong and weak H2O and CO2 lines shows the need to refine the line profile model.  相似文献   

3.
In situ measurements of the thermal ion composition of the ionosphere of Venus have been obtained for a period of two Venus years from the Bennett rf ion mass spectrometer on the Pioneer Venus Orbiter. Ion measurements within an altitude interval of 160 to 300 kilometers, corresponding to an overall latitude interval of about ?4° to 34°N, are assembled from the interval December 1978 to March 1980. This time interval corresponds to two revolutions of Venus about the Sun, designated as two “diurnal cycles”. The distributions of several ion species in this data base have been sorted to identify temporal and spatial variations, and to determine the feasibility of an analytical representation of the experimental results. The first results from the sorting of several prominent ions including O+, O2+, and H+ and several minor ions including CO2+, C+, and H2+ reveal significant diurnal variations, with superimposed modulation associated with solar activity and solar wind variations. The diurnal variation consists of strong day to night contrast in the ion concentrations, with differences of one to two orders of magnitude, depending upon ion mass and altitude. The concentrations of O2+, O+, CO2+ and C+ peak throughout the dayside decreasing sharply at the terminators to nightside levels, lower by one to two orders of magnitude relative to the dayside. The diurnal variations of the light ions H+ and H2+ peak during the night, exhibiting asymmetric nightside bulges favoring the pre-dawn sector, near 0400 solar hour angle. Superimposed upon the diurnal distributions are modulation signatures which correlate well with modulation in the F10.7 index, indicating a strong influence of solar variability on the ion production and distribution. The influence of solar wind perturbations upon the ion distributions are also indicated, by a significant increase in the scatter of the observations with increasing altitude as higher altitudes, approaching 300 kilometers, are sampled. Together, these temporal and spatial variations make the task of modelling the ionosphere of Venus both very interesting and challenging.  相似文献   

4.
Fourier spectrometers for the investigation of infrared spectra of Venus were installed on the recent Soviet orbiters “Venera-15” and “Venera-16”. Many spectra with reliable absolute calibration were obtained in the 280–1500 cm?1 region with a spectral resolution of 5 cm?1 (ground based processing) and about 7 cm?1 (preoprocessed on board) and a spatial resolution of about 100 km at the Venusian cloud top level. Bands of CO2, H2O, H2SO4 and SO2 are identified. The 15 μm-CO2- fundamental band was used for retrieval of altitude dependent temperature profiles. There are significant differences in the cloud structure above 60 km for distinct regions of Venus, demonstrated by differences in the spectra.  相似文献   

5.
Numerous measurements of the neutral upper atmosphere above 100 km have been made from spacecraft over Venus and over Mars. The Venus exospheric temperatures are unexpectedly low (less than 300°K near noon and less than 130°K near midnight). These very low temperatures may be partially caused by collisional excitation of CO2 vibrational states by atomic oxygen and partially by eddy cooling. The Venus atmosphere is unexpectedly insensitive to solar EUV variability. On the other hand, the Martian dayside exospheric temperature varies from 150°K to 400°K over the 11-year solar cycle, where CO2 15-μm cooling may be less effective because of lower atomic oxygen mixing ratios. On Venus, temperature increases with altitude on the dayside (thermosphere), but decreases with altitude from 100 to 150 km on the nightside (cryosphere). However, dayside Martian temperatures near solar minimum for maximum planet-sun distance and low solar activity are essentially isothermal from 40 km to 200 km. During high solar activity, the thermospheric temperatures of Mars sharply increase. The Venus neutral upper atmosphere contains CO2, O, CO, C, N2, N, He, H, D and hot nonthermal H, O, C, and N, while the dayside Mars neutral upper atmosphere contains CO2, O, O2, CO, C, N2, He, H, and Ar. There is evidence on Venus for inhibited day-to-night transport as well as superrotation of the upper atmosphere. Both atmospheres have substantial wave activity. Various theoretical models used to interpret the planetary atmospheric data are discussed.  相似文献   

6.
The first unambiguous identification of ammonia in the upper atmosphere of Jupiter has been obtained from the observation of individual NH3 bands in an IUE high resolution spectrum in the 2100–2400 Å spectral range. The variation with wavelength of the strengths of these NH3 bands implies that the NH3 abundance has to be strongly reduced by photolysis in the upper jovian atmosphere. Preliminary analysis by means of scattering models shows that the ammonia mixing ratio cannot be constant with altitude. The mixing ratio NH3/H2 ranges from 5 10?8 to 5 10?7 at the 250 mb pressure level, and decreases as P or P2 toward higher altitudes.  相似文献   

7.
A first ISRO-DFVLR collaborative balloon flight of the MPAE cryogenic sampler was conducted at Hyderabad, India (17.5°N), on March 27 1985, and 15 air samples were collected between 10 and 35 km altitude. Vertical profiles of source gases analysed from these samples, such as CCl3F, CCl2F2, CBrClF2, and CH4 are presented. Due to tropical upwelling, mixing ratios of source gases decrease less rapidly with altitude than at mid-latitudes.  相似文献   

8.
Model calculations of the dayside ionosphere of Venus are presented. The coupled continuity and momentum equations were solved for O2+, O+, CO2+, C+, N+, He+, and H+ density distributions, which are compared with measurements from the Pioneer Venus ion mass spectrometer. The agreement between the model results and the measurements is good for some species, such as O+, and rather poor for others, such as N+, indicating that our understanding of the dayside ion composition of Venus is incomplete. The coupled heat conduction equations for ions and electrons were solved and the calculated temperatures compared with Pioneer Venus measurements. It is shown that fluctuations in the magnetic field have a significant effect on the energy balance of the ionosphere.  相似文献   

9.
Corrected thermal net radiation measurements from the four Pioneer Venus entry probes at latitudes of 60°N, 31°S, 27°S, and 4°N are presented. Three main conclusions can be drawn from comparisons of the corrected fluxes with radiative transfer calculations: (1) sounder probe net fluxes are consistent with the number density of large cloud particles (mode 3) measured on the same probe, but the IR measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5×10?5 near 60°, 2–5×10?4 near 30°, and >5×10?4 near the equator.  相似文献   

10.
The measurements of positive ion composition in the high latitude D-region have revealed an excess of 34+ under distrubed conditions which has been interpreted as H2O2+. At the same altitude range near the transition height oxonium ions were measured as well. This paper presents a new model for the production and loss of oxonium ions with their production from H2O2+ + H2O → H3O+ + HO2 and their loss by attachment of N2 and/or CO2. A reaction constant of 8.5×10?28 (300/T)4 cm6s?1 has been obtained for the three body attachment H3O+ + CO2 + M → H3O+.CO2 + M from the measured density profile of 63+ in flight 18.1020. Mesospheric H2O and H2O2 densities are inferred from measurements of four high latitude ion compositions based on the oxonium model. The mixing ratios of hydrogen peroxide are up to two orders of magnitude higher compared to previous model calculations. In order to explain the missing production of odd hydrogen, we consider larger O(1D) densities, surface reactions of O(3P) on particles, and cathalytic photodissociation of water vapor on aerosol particles.  相似文献   

11.
Four important sampling techniques are briefly reviewed: Selective sampling on impregnated filters for measuring acidic gases, the matrix isolation technique for measuring radicals, whole air grabsampling and whole air cryogenic sampling for measuring stable source gases.Vertical profiles of H2, CH4, CO, N2O, CFCl3 and CF2Cl2 resulting from gas chromatographic analysis of whole air samples collected with a cryogenic sampler are presented. Year-to-year variations are observed for H2, CH4 and N2O above 25 km, while CFCl3 and CF2Cl2 mixing ratios show a noticeable increase between 1977 and 1979 at almost every height level.The CO2 mixing ratio is not constant with height but rather decreases from 332 ppmV at 10 km to 325 ppmV at 30 km.The vertical distribution of methyl chloride is characterized by a rapid decrease from 600 pptV in the troposphere to less than 10 pptV at 32 km in agreement with model results.  相似文献   

12.
Zonal mean mixing ratios of ozone and NO2 measured by SAGE II on several days in March and April, 1985 are compared against zonal means for this time of year previously measured by SAGE I, SBUV, and LIMS. After allowing for calculated diurnal variations of these gases, agreement within 15% is found for ozone and 20% for NO2. It is noted that the profile error bars given on the SAGE II data tapes need to be carefully interpreted and that the measured tropical variances suggest that these error bars are being somewhat overestimated. Planetary waves in both ozone and NO2 in the middle stratosphere should be derivable from the SAGE II measurements.  相似文献   

13.
The concentrations of neutral hydrogen within the atmosphere of Venus are investigated for the period 1979–1980. During this period, the planet made nearly three orbits about the Sun, so that nearly three complete diurnal cycles were observed from the Pioneer Venus Orbiter (PVO). Values of n(H) are derived from in-situ ion and neutral composition measurements from the Orbiter Ion Mass Spectrometer (OIMS) and the Orbiter Neutral Mass Spectrometer (ONMS) using a charge exchange relationship involving O+, H+, O and CO2. The dawn bulge in the diurnal distribution of n(H), reported from the first diurnal cycle by Brinton et al., is found to persist with n(H) peaking at levels near 2 - 5 × 107/cm3 at altitudes below 165 km. At peak levels, the bulge exhibits a concentration ratio up to 400/1 relative to dayside values. Large day to day variations of up to a factor of five in n(H) are frequently encountered, and are attributed to perturbations induced by the solar wind interaction. These short term variations, plus a suggestion of some local time variation in the bulk location, make precise assessment of interannual variations in the n(H) difficult. Between the first diurnal cycle in early 1979 and the third in mid 1980, the decline in solar euv flux was of the order of 10% or less. Allowing for uncertainties due to short term variations, no clear evidence is found for an interannual variation in the hydrogen concentrations.  相似文献   

14.
What is the influence of hydrogen escape from the atmosphere of small planetary bodies on the synthesis of organic molecules in that atmosphere? To answer this question, laboratory experiments have been performed to study the evolution of different reducing model atmospheres submitted to electrical discharges, with and without the simulation of H2 escape. A study of mixtures of nitrogen and methane shows a very strong effect of H2 escape on the formation of organic nitriles, the only nitrogen containing organics detected in the gas phase. These are HCN, CH  CCN, (CN)2, CH2CHCN, CH3 CN and CH3CH2CN. The yield of synthesis of most of these compounds is noticeably increased, up to several orders of magnitude, when hydrogen escape is simulated. The escape of H2 from the atmosphere of the primitive Earth may have played a crucial role in the formation of reactive organic molecules such as CHCCN or (CN)2, which can be considered as important prebiotic precursors. These experimental results may also explain extant data concerning the nature and relative abundance of organics present in the atmosphere of Titan, a planetary satellite which may be an ideal model within our solar system for the study of organic cosmochemistry and exobiology.  相似文献   

15.
Statistical mid-latitude models of altitude distribution of temperature, water vapor, ozone, carbon dioxide and trace gases (CO, CH4, N2O, NO, NO2) are considered. The mean characteristics of altitude profiles of these parameters, as well as their time and space variability, have been taken into account. The statistical regional models were constructed using a temperature-humidy complex. The considered statistical mid-latitude models have been constructed as applied to solutions of the problems on remote sounding of the atmosphere and underlying surface from outer space.  相似文献   

16.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

17.
During the last few years a gas expansion system, combined with a mass spectrometer has been developed and successfully flown in the stratosphere. Neutral gas particles are formed into a molecular beam which traverses the ion source of the mass spectrometer without wall interactions. Vertical profiles of constituents such as H2O, CO2 and O3 have been measured in the altitude range of 20 to 40 km during balloon descents. Isotopes of major atmospheric gases (N2, O2, Ar) provided in-flight calibration standards.Before each flight the mass spectrometer system was calibrated in the laboratory for many gases of interest, including ozone. Mixing ratios of ozone determined from recent flights have accuracies of better than 5%. The sensitivity of the system was sufficiently high to detect, in addition, the heavy isotope of ozone at mass 50. A pronounced enhancement of heavy ozone in the upper stratosphere has been found. The mass spectrometer system provides the unique opportunity to perform in the stratospherein-situ measurements combined with isotopic studies.  相似文献   

18.
Calculations are presented of the vibrational distribution of O2+ in the Venusian ionosphere for a model atmosphere based on Pioneer Venus data. At 100 km, quenching precludes the survival of vibrationally excited O2+. At the exobase, near 200 km, more than half are vibrationally excited. The effects of vibrationally excited O2+ on the hot oxygen corona and the airglow are discussed.  相似文献   

19.
Models of the Venus neutral upper atmosphere, based on both in-situ and remote sensing measurements, are provided for the height interval from 100 to 3,500 km. The general approach in model formulation was to divide the atmosphere into three regions: 100 to 150 km, 150 to 250 km, and 250 to 3,500 km. Boundary conditions at 150 km are consistent with both drag and mass spectrometer measurements. A paramount consideration was to keep the models simple enough to be used conveniently. Available observations are reviewed. Tables are provided for density, temperature, composition (CO2, O, CO, He, N, N2, and H), derived quantities, and day-to-day variability as a function of solar zenith angle on the day- and nightsides.Estimates are made of other species, including O2 and D. Other tables provide corrections for solar activity effects on temperature, composition, and density. For the exosphere, information is provided on the vertical distribution of normal thermal components (H, O, C, and He) as well as the hot components (H, N, C, O) on the day- and nightsides.  相似文献   

20.
Recent in situ measurements with balloon borne quadrupole mass spectrometers, between 20 and 45 km altitude, are reviewed and discussed.The major stratospheric positive ions observed are proton hydrates [H+(H2O)n] and non proton hydrates of the form H+Xm(H2O)2. The data analysis allows a derivation of the vertical mixing ratio profile of X (most probably CH3CN), which is compared with recent model calculations. From negative ion composition data, showing the presence of NO3? and HSO4? cluster ions, the density of sulfuric acid in the stratosphere is deduced. The implications of these findings on our understanding of the sulfur chemistry is briefly treated.Finally some other aspects such as contamination, cluster break up and the use of stratospheric ion mass spectra for determination of thermochemical data and other minor constituents are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号