首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Remote sensing from satellites continues to have a very large impact on the activities of the World Meteorological Organization (WMO) and continues to provide very great benefits to meteorological services throughout the world. Meteorological satellites provide remotely sensed data which can be converted into meteorological measurements such as cloud cover, cloud motion vectors, surface temperature, vertical profiles of atmospheric temperature and humidity, snow and ice cover, ozone and various radiation measurements. The meteorological satellites are part of the global operations of the World Weather Watch Programme which serves as the basic programme of the WMO by supporting other programmes and activities. Satellite measurements are critical to the success of many different components in the World Climate Programme. Special projects are being designed for the 1990s to take advantage of the data from satellite systems designed primarily to provide land or ocean observations. The Applications of Meteorology Programme makes use of remotely sensed data to provide products and services to agricultural, aeronautical and marine activities. The transfer of knowledge and technology in satellite remote sensing applications are important elements of the Technical Co-operation and the Education and Training Programmes.  相似文献   

2.
The TIROS-N operational meteorological satellite observing system will have the capability of determining global ozone amounts from two instruments by 1985. The TIROS Operational Vertical Sounder (TOVS) yields total ozone amounts through measurements of atmospheric infrared radiances. The Solar Backscatter Ultraviolet (SBUV/2) spectrometer yields total ozone amounts and vertical ozone profiles through measurements of the solar ultraviolet radiation backscattered by the atmosphere. The current operations plan calls for single satellites containing both instruments system with local afternoon equator crossing times. They will be launched at approximately 18 month intervals.The satellite ozone products will require verification using commonly accepted references. For total ozone, Dobson spectrophotometer determinations are to be used. For vertical profiles, no clear choice now exists among balloon-launched chemical sondes, rocket-launched optical sondes or Dobson Umkehr measurements. The applicability and use of these measurement systems are discussed with emphasis on the need for the verification data consistent with the operational satellite lifetimes.Another major source of data for verification is other satellite systems. Comparisons of vertical ozone profiles from several concurrent satellites is discussed. This includes results from SAGE, LIMS and SBUV.  相似文献   

3.
Long-term change of the global sea level resulting from climate change has become an issue of great societal interest. The advent of the technology of satellite altimetry has modernized the study of sea level on both global and regional scales. In combination with in situ observations of the ocean density and space observations of Earth’s gravity variations, satellite altimetry has become an essential component of a global observing system for monitoring and understanding sea level change. The challenge of making sea level measurements with sufficient accuracy to discern long-term trends and allow the patterns of natural variability to be distinguished from those linked to anthropogenic forcing rests largely on the long-term efforts of altimeter calibration and validation. The issues of long-term calibration for the various components of the altimeter measurement system are reviewed in the paper. The topics include radar altimetry, the effects of tropospheric water vapor, orbit determination, gravity field, tide gauges, and the terrestrial reference frame. The necessity for maintaining a complete calibration effort and the challenges of sustaining it into the future are discussed.  相似文献   

4.
FY-3 is the second generation polar-orbiting meteorological satellite of China. The first satellite named FY-3A of this series was launched on 27 May 2008. The first operational satellite named FY-3C of this series was launched on 23 September, 2013. The new generation satellites are to provide three-dimensional, quantitative, multi-spectral global remote sensing data under all weather conditions, which will greatly help the operational numerical weather prediction, global climate change research, climate diagnostics and prediction, and natural disaster monitoring. They will also provide help for many other fields such as agriculture, forestry, oceanography and hydrology. With the abovementioned capability, the FY-3 satellites can make valuable contributions to improving weather forecasts, global natural-disaster and environmental monitoring.   相似文献   

5.
Observational data to effectively evaluate weather effects, which accumulate into current climate status, are available for affluent nations but often are inadequate elsewhere. Data acquired by satellite sensors in the visible-near infrared portion of the reflected solar energy spectrum have been accumulated daily since 1965 and for the earth's emitted radiance in the 11000 nm window since 1972. With the advent of the TIROS-N satellite in 1978, the solar reflected energy has been sensed in two separate channels and beginning with NOAA-6, the second vehicle of the TIROS-N family, these two channels became complementary rather than overlapping. This feature makes vegetative monitoring possible and now is being exploited to provide daily experimental products. These global vegetative index (GVI) arrays have been used to observe and map the effects of droughts, floods, adverse winds and thermal stresses on the global arable lands. These data and the related sea surface temperatures, both derived from satellite data, provide realistic measures of the global climate and can assist climatic forecasting.  相似文献   

6.
Antarctica is a continent that crucial for studying climate change and its progression across time, as well as analyzing and forecasting local and global change. In this environment, due to the challenges caused by sea-level rise, storm surges, and tsunamis, sustainability is a critical concern, particularly for coastal regions. As a result, the long-term observations that will be conducted in Antarctica are critical for monitoring the adverse impacts of climate change. In recent years, many monitoring approaches, both space, and ground-based are performed to monitor sea/ice level trends in space-based scientific investigations conducted in and around the region. In the study, based on one year of observations from the Palmer GNSS Station, the GNSS Reflectometry technique was used to measure the sea level on the Antarctic Peninsula (PALM). GNSS Station observations were analyzed with a Lomb-Scargle periodogram to monitor sea-level changes, and results were validated with data from a co-located tide gauge (TG). The results show that the correlation between GNSS-R sea-level changes and tidal sea-level changes is found as 0.91.  相似文献   

7.
The modelling of climate and circulation processes requires more than ever before accurate data on the energy exchange between the earth's surface and the atmosphere. Accuracies are estimated to range between 2–20 Wm?2 for global and monthly averages. The four components of the radiation budget at ground can still not at all be derived with sufficient accuracy from satellite measurements and from correlative data of conventional surface based origin. In this paper are discussed the general possibilities. Basic research is still required to establish a reliable error budget, and ground truth is essential.  相似文献   

8.
The quality and availability of Uncalibrated Phase Delay (UPD) solutions are crucial to the Precise Point Positioning (PPP) service, and the long-term temporal variability and its contributing factors should be better understood. In this paper, we comprehensively investigate the long-term time-varying characteristics of each UPD product respectively generated by a global and regional network and their interoperable application in PPP-AR (ambiguity resolution), the sampling of the WL and NL UPDs are daily and 30 s, respectively. Firstly, in terms of our 30 day Wide-Lane (WL) UPD products of 31 satellites, the Standard Deviation (STD) of each satellite WL UPDs ranges from 0.04 to 0.06 cycles, indicating that the long-term prediction accuracy of satellite WL UPD is sufficient for fixing Wide-Lane ambiguities. Secondly, when a satellite in eclipsing the discontinulity may corrupt the determination of Narrow-Lane (NL) UPD in form of offset, as a result of lacking or poor satellite attitude dynamic modeling. When the influence of discontinuity is removed, the STD of our estimated satellite NL UPDs is less than 0.05 cycles. Thirdly, the STD of our estimated receiver WL UPDs is mainly below 0.2 cycles, which implies that its stability is one order poorer that of the satellite. In addition, if they are used for stations in and around the network covered region, the stability of the UPD products from the CMONOC (Crustal Movement Observation Network of China) is better than that from a global network, benefit from the fact that all the CMONOC stations are equipped with the same receiver type. Finally, the PPP-AR results show that a rate of 82.9% for stations with a WL-ambiguity-fixed rate of over 90% while 69.5% for stations with an NL-ambiguity-fixed rate of over 80% can be achieved when using UPD from the global network, which is worse than that of using UPD from the CMONOC (85.7% for stations with a WL-ambiguity-fixed rate of over 90% while 75% for stations with an NL-ambiguity-fixed rate of over 80%). The results of the experiment on the UPD interoperable application in PPP show that the global network UPD products can provide a fast AR at any single station, and the convergence time is well below 25 min. Particularly, when the location of a station is in and around the regional network, our results show that the PPP results obtained using regional UPDs enable the consistent use of global UPDs. When the location of a station is far away from the regional network, using the regional UPDs can not achieve PPP-AR. Finally, the WL UPDs of the previous day is used for forecasting to estimate the NL UPDs, the stability analysis results of NL UPDs solution and positioning results are demonstrate the validity of forecasted UPD products.  相似文献   

9.
Hyperspectral resolution image products of a synthetic sensor featuring the high spatial resolution of the space-borne sensor can offer cost-effective means for enhancing our current capabilities in terms of providing an array of images in lieu of designing an expensive system for image acquisition, which can serve the expanding needs of the scientific and user communities for various critical water color applications. Despite several studies on enhancing the capability of land remote sensing sensors, full spectrum reconstruction of water color images with varying spectral bands is hampered by the lack of methods and accurate atmospheric correction procedures. In the present work, a novel method is developed for reconstruction of hyperspectral resolution images from high spatial-resolution Sentinel 2 Multispectral Instrument (MSI) data representative of many complex waters in coastal and inland zones. This method uses a deep neural network (DNN) with multiple blocks of deconvolution and dense layers. The spectral reconstruction of hyperspectral resolution images from multispectral data was based on rigorous training data from the atmospherically-corrected and validated HICO normalized water-leaving radiance products (with spectral resolution 438-868 nm sampled at 5.7 nm) of diverse water types. The generalizability and versatility of the DNN method was tested and evaluated systematically by means of various qualitative and quantitative analyses using concurrent space-borne (MSI and HICO) and in-situ measurements from different regional waters. Reconstructed hyperspectral resolution radiances obtained from the MSI images closely matched with independent HICO and MSI measurements within the desired accuracy. Successful reconstruction and validation of the hyperspectral radiances indicate that the proposed state-of-the-art method provides possible future directions for enhancing our current capabilities of space-borne sensors for various research purposes and societal applications at local, regional and global scales.  相似文献   

10.
Recent advances in satellite techniques hold great potential for mapping global gravity wave (GW) processes at various altitudes. Poor understanding of small-scale GWs has been a major limitation to numerical climate and weather models for making reliable forecasts. Observations of short-scale features have important implication for validating and improving future high-resolution numerical models. This paper summarizes recent GW observations and sensitivities from several satellite instruments, including MLS, AMSU-A, AIRS, GPS, and CLAES. It is shown in an example that mountain waves with horizontal wavelengths as short as 30 km now can be observed by AIRS, reflecting the superior horizontal resolution in these modern satellite instruments. Our studies show that MLS, AMSU-A and AIRS observations reveal similar GW characteristics, with the observed variances correlated well with background winds. As a complementary technique, limb sounding instruments like CRISTA, CLAES, and GPS can detect GWs with better vertical but poorer horizontal resolutions. To resolve different parts of the broad GW spectrum, both satellite limb and nadir observing techniques are needed, and a better understanding of GW complexities requires joint analyses of these data and dedicated high-resolution model simulations.  相似文献   

11.
Cloudiness modulates the radiation budget at the top of the Earth-atmosphere system. For radiation balance studies, for climate diagnostic studies, and for climate modeling studies, it is important to know the sensitivity of both the outgoing longwave radiation and the net (absorbed solar minus outgoing longwave) radiation of the system to changes in cloudiness on a global basis. Based on a 45 month series of NOAA satellite scanning radiometer observations, estimates of the global distribution of these sensitivity parameters are obtained.  相似文献   

12.
Since the early 1990s, global positioning system measurements have been used to study of the state and rapid changes of the Total Electron Content in the ionosphere. Currently, the increasing number of permanent stations makes it possible to generate maps of the irregularities in the ionosphere for specified regions with sub-daily resolution. The main goal of this work was to apply global navigation satellite system observations to obtain information about ionospheric variability around the North Geomagnetic Pole. In order to detect the ionospheric disturbances, 30-s observation data was used. The Rate of Total Electron Content Index was applied as a measure of the variability in the ionosphere. The first analyses were executed using more than 100 permanent stations. The results show two kinds of products: 2-hour maps in spherical geomagnetic coordinates and daily maps presenting the occurrence of the strong Total Electron Content fluctuations as a magnetic local time function, for the most disturbed days of April 2010. Apart from the main product of the algorithm, the Rate of Total Electron Content time series for individual satellite tracks was presented. The results demonstrated very good sensitivity of the obtained maps, which can detect even quite weak disturbances. The presented algorithm developed at the Geodynamic Research Laboratory of the University of Warmia and Mazury, in cooperation with Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, will be applied in the near future to create near-real time service of the conditions in the ionosphere based on the Global Navigation Satellite Systems observations.  相似文献   

13.
There is a lack of independent ionospheric data that can be used to validate GPS imaging results at mid latitudes over severe storm times. Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), a global network of dual-frequency ground to satellite observations, provides this missing data and here is employed as verification to show the accuracy of the ionospheric GPS images in terms of the total electron content (TEC). In this paper, the large-scale ionospheric structures that appeared during the strong geomagnetic storm of 20 November 2003 are reconstructed with a GPS tomographic algorithm, known as MIDAS, and validated with DORIS TEC measurements. The main trough shown in an extreme equatorward position in the ionospheric imaging over mainland Europe is confirmed by DORIS satellite measurements. Throughout the disturbed day, the variations of relative slant TECs between DORIS data and MIDAS results agree quite well, with the average of the mean differences about 2 TECu. We conclude that as a valuable supplement to GPS data, DORIS ionospheric measurements can be used to analyse TEC variations with a relatively high resolution, ∼10 s in time and tens of kilometres in space. This will be very helpful for identification of some highly dynamic structures in the ionosphere found at mid-latitudes, such as the main trough, TID (Travelling Ionospheric Disturbances) and SED (Storm Enhanced Density), and could be used as a valuable auxiliary data source in ionospheric imaging.  相似文献   

14.
Despite the capability of Ocean Color Monitor aboard Oceansat-2 satellite to provide frequent, high-spatial resolution, visible and near-infrared images for scientific research on coastal zones and climate data records over the global ocean, the generation of science quality ocean color products from OCM-2 data has been hampered by serious vertical striping artifacts and poor calibration of detectors. These along-track stripes are the results of variations in the relative response of the individual detectors of the OCM-2 CCD array. The random unsystematic stripes and bandings on the scene edges affect both visual interpretation and radiometric integrity of remotely sensed data, contribute to confusion in the aerosol correction process, and multiply and propagate into higher level ocean color products generated by atmospheric correction and bio-optical algorithms. Despite a number of destriping algorithms reported in the literature, complete removal of stripes without residual effects and signal distortion in both low- and high-level products is still challenging. Here, a new operational algorithm has been developed that employs an inverted gaussian function to estimate error fraction parameters, which are uncorrelated and vary in spatial, spectral and temporal domains. The algorithm is tested on a large number of OCM-2 scenes from Arabian Sea and Bay of Bengal waters contaminated with severe stripes. The destriping effectiveness of this approach is then evaluated by means of various qualitative and quantitative analyses, and by comparison with the results of the previously reported method. Clearly, the present method is more effective in terms of removing the stripe noise while preserving the radiometric integrity of the destriped OCM-2 data. Furthermore, a preliminary time-dependent calibration of the OCM-2 sensor is performed with several match-up in-situ data to evaluate its radiometric performance for ocean color applications. OCM-2 derived water-leaving radiance products obtained after calibration show a good consistency with in-situ and MODIS-Aqua observations, with errors less than the validated uncertainties of ±5% and ±35% endorsed for the remote-sensing measurements of water-leaving radiance and retrieval of chlorophyll concentrations respectively. The calibration results show a declining trend in detector sensitivity of the OCM-2 sensor, with a maximum effect in the shortwave spectrum, which provides evidence of sensor degradation and its profound effect on the striping artifacts in the OCM-2 data products.  相似文献   

15.
Satellite measurements of the radiative exchange between the planet Earth and space have been the objective of many experiments since the beginning of the space age in the late 1950's. The on-going mission of the Earth Radiation Budget (ERB) experiments has been and will be to consider flight hardware, data handling and scientific analysis methods in a single design strategy. Research and development on observational data has produced an analysis model of errors associated with ERB measurement systems on polar satellites. Results show that the variability of reflected solar radiation from changing meteorology dominates measurement uncertainties. As an application, model calculations demonstrate that measurement requirements for the verification of climate models may be satisfied with observations from one polar satellite, provided we have information on diurnal variations of the radiation budget from the ERBE mission.  相似文献   

16.
Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure. Routing aimed at satellite networks has become a hot and challenging research topic. Satellite networks, which are special kind of Delay Tolerant Networks (DTN), can also adopt the routing solutions of DTN. Among the many routing proposals, Contact Graph Routing (CGR) is an excellent candidate, since it is designed particularly for use in highly deterministic space networks. The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool). Link failures are solved with neighbor discovery mechanism and route recomputation. Earth observation scenario is used in the simulations to investigate CGR’s performance. The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.   相似文献   

17.
The land surface temperature (LST) is a key parameter for the Earth’s energy balance. As a natural satellite of the Earth, the orbital of the moon differs from that of current Earth observation satellites. It is a new way to measure the land surface temperature from the moon and has many advantages compared with artificial satellites. In this paper, we present a new method for simulating the LST measured by moon-based Earth observations. Firstly, a modified land-surface diurnal temperature cycle (DTC) method is applied to obtain the global LST at the same coordinated universal time (UTC) using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The lunar elevation angles calculated using the ephemeris data (DE405) from the Jet Propulsion Laboratory (JPL) were then applied to simulate the Earth coverage observed from the moon. At the same time, the modified DTC model was validated using in situ data, MODIS LST products, and the FengYun-2F (FY-2F) LST, respectively. The results show that the fitting accuracy (root-mean-square error, RMSE) of the modified DTC model is not greater than 0.72?°C for eight in situ stations with different land cover types, and the maximum fitting RMSE of the modified model is smaller than that of current DTC models. By the comparison of the simulated LST with MODIS and FY-2F LST products, the errors of the results were feasible and accredited, and the simulated global LST has a reasonable spatiotemporal distribution and change trend. The simulated LST data can therefore be used as base datasets to simulate the thermal infrared imagery from moon-based Earth observations in future research.  相似文献   

18.
The Essential Climate Variables (ECVs), such as the atmospheric thermodynamic state variables and greenhouse gases, play an important role in the atmosphere physical processes and global climate change. Given the need of improvements in existing ground-based and satellite observations to successfully deliver atmosphere and climate benchmark data and reduce data ambiguity, the Climate and Atmospheric Composition Exploring Satellites mission (CACES) was proposed and selected as a candidate mission of the Strategic Priority Research Program of Chinese Academy Science (SPRPCAS). This paper presents an overview of the key scientific questions and responses of ECVs in relation to global change; the principles, algorithms, and payloads of microwave occultation using centimeter and millimeter wave signals between low Earth orbit satellites (LEO-LEO microwave occultation, LMO) as well as of the LEO-LEO infrared-laser occultation (LIO); the CACES mission with its scientific objectives, mission concept, spacecraft and instrumentation.   相似文献   

19.
Satellite-derived estimates of snow and sea-ice area have been produced weekly on an operational basis for over a decade. This paper presents a synopsis of recent climate research and climate diagnostics studies using these data at the National Weather Service's Climate Analysis Center (CAC). Currently available satellite products are evaluated in light of these studies and a set of desired characteristics for future satellite products are discussed.  相似文献   

20.
Since 1978 a number of satellite borne sensors have been used to measure the composition of the earth's atmosphere. These include the LIMS and SAMS instruments on the Nimbus 7 satellite (launched in October 1978), the SAGE instrument on the AEM2 satellite (launched in february 1979) and various instruments on the SME spacecraft (launched October 1981). For many species, these have provided the first abundance measurements with high spatial and temporal resolution and with global coverage. In this paper the composition measurements that have become available from these programs will be reviewed. The paper will then describe some recent studies that have made use of the new data. As it is the exclusive subject of another invited paper, ozone will not be discussed in in any detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号