首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite observations near the magnetopause and within the magnetosheath revealed the existence of some structures characterised by specific magnetic field and plasma signatures. They have been called “Flux Transfer Events”. One of the models of FTEs is a reconnected fluxtube, extending from the inner magnetosphere into the magnetosheath. ELF-ULF waves are often observed in together with other FTE's signatures. Wideband emissions are associated with the boundaries of FTEs with characteristic maxima at lower hybrid and ion-cyclotron frequencies. They provide a tool for better timing of the events. These emissions might also be related to the reconnection process. Observations of FTE's by Prognoz-8 satellite are presented in our paper. Wave signatures of the FTEs are described. Various mechanisms of generation of the emissions by instabilities depending on local plasma conditions are discussed along with non-local aspects of such waves. Numerical solutions of the dispersion equation for the typical conditions in FTEs are presented. Possible relation of these waves to the reconnection process are discussed.  相似文献   

2.
On April 15th 2003, Cluster crossed the dayside magnetopause boundary and observed a series flux transfer events (FTEs) during the interval from 0630 to 0730 UT. During this period, the interplanetary magnetic field (IMF) showed a negative z component and a positive y component. Simultaneous corresponding transient plasma flows were identified in the near-conjugate polar ionosphere by the CUTLASS Finland HF radar, and the geomagnetic field disturbances were observed by the IMAGE ground-based magnetometers. By combing these data and applying the Cooling model, we show that the transient plasma flows and the geomagnetic field disturbances are closely related to the dayside FTEs.  相似文献   

3.
Some sites for solar flares are known to develop where new magnetic flux emerges and becomes abutted against opposite polarity pre-existing magnetic flux (review by Galzauskas/1/). We have identified and analyzed the evolution of such flare sites at the boundaries of a major new and growing magnetic flux region within a complex of active regions, Hale No. 16918. This analysis was done as a part of a continuing study of the circumstances associated with flares in Hale Region 16918, which was designated as an FBS target during the interval 18 – 23 June 1980. We studied the initiation and development of both major and minor flares in Hα images in relation to the identified potential flare sites at the boundaries of the growing flux region and to the general development of the new flux. This study lead to our recognition of a spectrum of possible relationships of growing flux regions to flares as follows: (1) intimate interaction with adjacent old flux — flare sites centered at new/old flux boundary, (2) forced or “intimidated” interaction in which new flux pushes old field having lower flux density towards a neighboring old polarity inversion line where a flare then takes place, (3) “influential” interaction — magnetic lines of force over an old polarity inversion line, typically containing a filament, reconnect to the new emerging flux; a flare occurs with erupting filament when the magnetic field overlying the filament becomes too weak to prevent its eruption, (4) inconsequential interaction — new flux region is too small or has wrong orientation for creating flare conditions, (5) incidental — flare occurs without any significant relationship to new flux regions.  相似文献   

4.
The resistive MHD equations are numerically solved in two dimensions for an initial-boundary-value problem which simulates reconnection between an emerging magnetic flux region and an overlying coronal magnetic field. The solution involves both ideal-MHD and resistive-MHD processes, and the solution shows an evolution which is remarkably suggestive of the preflare, impulsive, and main phases of the flare-cycle.  相似文献   

5.
We study the extremely complex active region (AR) NOAA 10314, that was observed from March 13–19, 2003. This AR was the source of several energetic events, among them two major (X class) flares, along a few days. We follow the evolution of this AR since the very first stages of its emergence. From the photospheric evolution of the magnetic polarities observed with SOHO/MDI we infer the morphology of the flux tube that originates the AR. Using a computation technique that combines Local Correlation Tracking with magnetic induction constrains, we compute the rate of magnetic helicity injection at the photosphere during the observed evolution. From our results we conclude that the AR originated by the emergence of a severely deformed magnetic flux tube having a dominantly positive magnetic helicity.  相似文献   

6.
Hα filtergrams and magnetograms indicate that bright features (such as plages and granulation boundaries) correspond to areas of strong vertical magnetic fields and dark features (such as fibrils and filaments) are associated with strong horizontal magnetic field. It was suggested by /1/ that there is an excess dissipation of waves, available for heating, in regions of vertical magnetic fields. With this suggestion in mind, we have investigated the physical heating mechanism due to ponderomotive forces exerted by turbulent waves along curved magnetic flux loops. Results show that the temperature difference (ΔT) between the inside and outside of the flux loop can be classified into three parts; ΔT = ΔT1 + ΔT2 + ΔT3; in which ΔT1 and ΔT3 represent the heating or cooling effect from the ponderomotive force, and ΔT2 is the heating effect due to conversion of turbulent energy from the localized plasma. The specific physical mechanism (i.e., the ponderomotive forces exerted by turbulent waves), is used to illustrate solar atmospheric heating via an example leading to the formulation of plages.  相似文献   

7.
The photometric-magnetic dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. One of its consequences is the prediction of an upper limit of the sunspot areas. This upper limit is analytically expressed by the model parameters, while its calculated value is verified by the observational data. In addition, an upper limit for the magnetic strength inside the sunspot is also predicted, and then, we obtain the following significant result: The upper limit of the total magnetic flux in an active region is found to be of about 7.23 × 1023 Mx, namely, phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quiet Sun, having a typical maximum magnetic strength of about 12G. Therefore, the magnetic flux concentrated in an active region cannot exceed the magnetic flux concentrated in the photosphere as a whole.  相似文献   

8.
We study time evolution of an energy spectrum of a proton flux in the range of 47 – 4750 keV for the energeticparticle event occurred on 255 DOY in 1999, which we consider as one of typical diffusive acceleration events associated with interplanetary shocks and irrespective of large X-ray solar flares. Fast enhancement during evolution is found in the range of less than about 0.5 MeV. Our previous numerical simulations using Stochastic Differential Equation method could not show this behavior, although we obtained results showing a power law energy spectrum, which suggesting that energetic particles are accelerated diffusively by shock waves, the first-order Fermi acceleration. We consider that less than 0.5 MeV protons need to exist to explain behavior of the observational energy spectrum and perform numerical simulations in order to investigate proper injection models for this event.  相似文献   

9.
Intensity-time profiles of protons, alpha particles, and heavy ions (C, O, Fe) in the MeV/nucleon energy range have been analyzed for one solar particle event following the solar flare on September 23, 1978. The data have been obtained with the wide angle double dE/dx-E sensor of the Max-Planck-Institut/University of Maryland experiment onboard ISEE-3. We found time variations in the iron to helium ratio of up to 2 orders of magnitude and a significant variation of the O/He ratio during this event, whereas the C/O-ratio at the same energy/nucleon appears to be time independent. We investigated the influence of a rigidity dependent mean free path in interplanetary space and of rigidity dependent coronal propagation on heavy ion ratios during solar particle events. We found that both the magnitude and time scale of the ratio changes during the September 23 event cannot be explained by rigidity dependent interplanetary or coronal propagation alone. These ratio changes are probably caused by multiple injection at the sun.  相似文献   

10.
Profiles of O3 partial pressure and of other minor atmospheric constituents (NO, NO2, HCL, HF and H2O), observed in the middle atmosphere during Solar proton events (20.04.1998; 05.04.2000), were analysed. Conclusions were drawn that under SCR impact a short-term O3 partial pressure increase and destruction of some freon constituents took place.  相似文献   

11.
12.
Due to the narrow bandwidth and the small size of the subsecond microwave pulses, we can use them as probe sources for study of propagation effects in the low corona. More than 160 microwave bursts with subsecond pulses (SSP) have been observed with the Siberian Solar Radio Telescope at 5.7 CHz for the period 2000–2004. Working with a large dataset of homogeneous observational material (spatial resolution from 15″ to 20″, temporal resolution 14 mc), we estimated sizes of SSP and studied relation between SSP sizes and sense of the polarization and their position on the Sun. Our results are in accordance with those obtained during the 22nd solar cycle. The apparent sizes of SSP increase toward the solar limb. The obtained dependence is in agreement with Bastian‘s (Bastian, T.S. Angular scattering of solar radio emission by coronal turbulence. ApJ 426, 774, 1994.) model calculations. The center-to-limb variation of the source size is explained by scattering on plasma turbulence along the ray path in the solar corona. The most events with high polarization occur near the central meridian (±30°). The polarization sense corresponds mainly to the ordinary mode.  相似文献   

13.
The electric properties of pulsar’s inner annular gap are explored in this paper. Under two main assumptions, (1) the pulsar is alive, (2) the total charge of pulsar should not vary with time, the condition for the acceleration of negative particle in the annular region is derived. The acceleration condition is j ? 0.5j+, i.e., the current carried by negative particles is greater than or equal to 0.5 times of the current carried by positive particles. This condition holds even when the backward flow of positive particles exists in the annular region. It is noted that the outflow of negative particles offers good opportunities to understand the current closure problem of pulsar as well as wide radiation beam of pulsar observed at high energy band.  相似文献   

14.
The magnetosheath plays a dominant role in the Sun–Earth connection because the magnetosheath field and plasma actually interact with the magnetosphere. The interactions change the magnetospheric magnetic field from its nominal value through a long chain of different processes. The change is usually described by geomagnetic indices and thus it can be expected that these indices would reflect changes in the magnetosheath. The present paper analyzes the relation between geomagnetic activity characterized by changes of the Kp, DST and AE indices and ion flux measured in the night-side magnetosheath. The results suggest a weak dependence of the DST index on the ion flux in the inner magnetosheath that is connected with a magnetopause displacement. On the other hand, fluctuations of the ion flux in the analyzed frequency range do not correlate with any of the indices.  相似文献   

15.
Under NASA's Space Environment Effects (SEE) program, we are developing new models for the low-altitude (250–1000 km, L < 1.5) trapped radiation environment based on data from the TIROS/NOAA polar orbiting spacecraft. The unique features of this data base and model include the long time series (more than one complete solar cycle) obtained from the TIROS/NOAA data and the use of a coordinate system more applicable to the low-altitude environment. The data show a strong variation (as much as a factor of 10) over the solar cycle and a hysteresis effect between the rising and falling portions of the solar cycle. Both the solar cycle variation and the hysteresis are functions of L. In addition to the hysteresis effect, the flux during a given cycle appears to be a function of the previous cycle. Superimposed on the gradual variation over the solar cycle, transient effects, correlated with solar particle events (SPEs), can be clearly seen. Comparison with the AP8 models shows that the measured flux is a factor of 2–3 higher than the model. These data have important implications for the development and use of trapped radiation models, and will also contribute to our knowledge of the source and loss mechanisms at work in the inner zone.  相似文献   

16.
The kinematics of gas clouds in broad-line region of active galactic nuclei and quasars is considered. The motion of the clouds is governed by three forces — gravitational influence from the central supermassive body, radiational pressure from the continuum radiation, and resistance of the intercloud medium. Clouds moves radial but only outward motion gives a velocity field, which is in accordance with the observational data. The profiles of the permited lines are obtained in some simplify assumptions for the emissive capacity of the gas in clouds, and are in good agreement with the observational data. In the framework of the model under consideration there is a possibility to estimate some physical parameters of the nuclei such as mass of the central body and density of the intercloud medium.  相似文献   

17.
New flux emerging from below the photosphere is believed to give rise to small flares and also to be capable of triggering large events when extra energy is stored in the overlying field. A summary is given of the observations of emerging flux, together with the current theoretical ideas on its behaviour.  相似文献   

18.
19.
This paper examines high resolution (ΔE/E = 0.15) photoelectron energy spectra from 10 eV to 1 keV, created by solar irradiances between 1.2 and 120 nm. The observations were made from the FAST satellite at ∼3000 km, equatorward of the auroral oval for the July–August, 2002 solar rotation. These data are compared with the solar irradiance observed by the Solar EUV Experiment (SEE) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and fluxes calculated using the Field Line Interhemispheric Plasma (FLIP) code. The 41 eV photoelectron flux, which corresponds to solar EUV fluxes near 20 nm, shows a clear solar rotation variation in very good agreement with the EUV flux measurements. This offers the possibility that the 41 eV photoelectron flux could be used as a check on measured solar EUV fluxes near 20 nm. Because of unexpected noise, the solar rotation signal is not evident in the integral photoelectron flux between 156 and 1000 eV corresponding to EUV wavelengths between 0.1 and 7 nm measured by the SEE instrument. Examination of daily averaged photoelectron fluxes at energies between 25 and 500 eV show significant changes in the photoelectron spectra in response X and M class flares. The intensity of photoelectrons produced in this energy region is primarily due to two very narrow EUV wavelength regions at 2.3 and 3 nm driving Auger photoionization in O at 500 eV and N2 at ∼360 eV. Comparison of calculated and daily averaged electron fluxes shows that the HEUVAC model solar spectrum used in the FLIP code does not reproduce the observed variations in photoelectron intensity. In principle, the 21 discrete photoelectron energy channels could be used to improve the reliability of the solar EUV fluxes at 2.3 and 3 nm inferred from broad band observations. In practice, orbital biases in the way the data were accumulated and/or noise signals arising from natural and anthropogenic longitudinally restricted sources of ionization complicate the application of this technique.  相似文献   

20.
On the basis of the experimental data obtained from the high resolution X-ray spectra for solar flares and active regions the Suprathermal electron model (SEM) was proposed. This model suggests the existance of the multitemperature structure of the solar plasma emitting Fe and Ca X-rays and the presence of additional electrons with low energies E ? 10 keV and small densities ~ 1–5% relative to the thermal component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号