首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ion model of the lower ionosphere is proposed. It consists of four positive ions: O2+, NO+ and two cluster ions - a simpler CI1 and a more complex CI2. This model well explains the normal component of the winter anomaly (WA) in the D-region, which is recorded by absorption measurements on short radiowaves and rocket experiments at middle (40°N) and high (70°) latitudes. The higher values of the electron density during the winter appear as a result of the lower recombination because of smaller rates of cluster ion formation, i.e. the normal WA can be explained and modelled by the regular seasonal variations of composition, temperature and density.  相似文献   

2.
Probably the only reliable method of checking an electron density model below 70 km is to calculate from it what would be obtained by VLF or LF propagation over certain paths, and to compare the results with actual observations. This has been done for the IRI at various frequencies from 16 to 70 kHz; the results agree in places but differ substantially elsewhere. Previous models described by the author give satisfactory results and it is suggested that certain features of them might be incorporated with advantage in the IRI. In particular, it is impossible to get agreement with VLF propagation in all seasons by means of a model varying only with solar zenith angle, such as the IRI from 50–90 km.  相似文献   

3.
The new IRI formula, as accepted at the 1983 Stara Zagora Workshop, prescribes the use of Epstein functions for reproducing logarithmic electron density profiles. In this paper we discuss solutions which might be applicable to the lower ionosphere. The experimental data base is briefly reviewed. It appears that the stratification near 80 km must be accepted as a regular feature of the daytime lower ionosphere. The C-layer problem is left open. In order to reproduce such profiles, one needs three LAY-functions. Examples show that the weighted sum of these does very well represent experimental profiles, the amplitudes being determined by a least square fit. For profile synthesis (as in IRI) a least square determination of the three amplitudes, admitting four linear conditions, is proposed.  相似文献   

4.
Ion composition of the D region is principally characterized by the existence of two distinct regions of predominant molecular ions and predominant cluster ions, separated from each other by a rather sharp ‘transition height’, which is proposed to be included in the IRI as an additional parameter, supplementing the electron density models. It is possible to predict the position of this ‘transition height’ at a given place and time with the aid of a simplified ion chemistry scheme which is shown to be satisfactorily compatible with experimental ion composition data available in the literature. Our suggested method of this prediction makes use of the (IRI or experimental) electron density profile at the location and season in question, together with an effective clustering rate coeeficient calculated from corresponding temperature and density profiles taken from a suitable reference model of the neutral atmosphere.  相似文献   

5.
A Langmuir probe designed and developed at the Physical Research Laboratory, Ahmedabad has been used on a variety of rockets since 1966 from the Thumba Equatorial Rocket Launching Station, TERLS (8°31'N, 76°52'E, dip.lat. 0°47'S) to study the structure of the equatorial lower ionosphere. Good quality data is available from a set of twenty five rocket flights conducted during the period 1966 to 1978. This data has been obtained using a single standardised instrument at a single location and using a uniform procedure for data reading and analysis, and adopting a calibration procedure to convert the measured probe currents into electron densities which involves a height dependent calibration factor. The data has been used to establish the gross features of the equatorial lower ionosphere under daytime, night time, morning twilight and evening twilight periods.  相似文献   

6.
The paper presents data from some campaigns at Sura heating facility in 2011–1016. The experiments on probing of the artificial disturbed region of the lower ionosphere were carried out at two observation sites. One of them was located near Vasil’sursk 1 km from Sura facility (56.1°N; 46.1°E) and the other site was located at the Observatory (55.85°N; 48.8°E) of Kazan State University, 170 km to the East. Investigation of the features of the disturbed region of the lower ionosphere based on its diagnostics by the methods of the vertical sounding and oblique backscattering is the main goal of this paper. Ionosphere disturbance was fulfilled by the effect of the powerful radio wave of the ordinary or extraordinary polarization emitted by transmitters of the Sura facility with effective radiated power ERP = 50–120 MW at the frequency of 4.3, 4.7 and 5.6 MHz. Pumping waves were emitted with period from 30 s to 15 min. The disturbed region of the ionosphere in Vasil’sursk was probed by the vertical sounding technique using the partial reflexion radar at the frequency of 2.95 and 4.7 MHz. For the oblique sounding of the disturbed region the modified ionosonde Cyclon-M, operating at ten frequencies from 2.01 to 6.51 MHz was used at the Observatory site. On many heating sessions simultaneous variations of the probing partial reflection signals in Vasil’sursk and backscattered signals in Observatory were observed at the height at 40–100 km below the reflection height of the pumping wave. These observations were correlated with the pumping periods of the Sura facility. Possible mechanisms of the appearance of the disturbance in the lower ionosphere and its effect on the probing radio waves are discussed.  相似文献   

7.
8.
Theoretical considerations can be helpful tools in modelling ionospheric parameters in regions and for times where not enough experimental data are available. Our study asks whether results of heat balance calculations should be introduced to supplement the data base for the International Reference Ionosphere (IRI). We discuss the present status of our theoretical understanding and examine the influence of the following unresolved or neglected terms: (1) electron heating rate, (2) electron cooling by fine structure excitation of atomic oxygen, and (3) height-dependent Coulomb Logarithm. The ambiguity introduced by (1)–(3) leads up to 30% uncertainty in the electron temperature of the lower thermosphere. The electron temperature in the upper ionosphere is largely determined by heat conduction from above and depends critically on the conditions assumed at the boundary between ionosphere and plasmasphere.  相似文献   

9.
Data on day-time and night-time radio wave absorption in the frequency range 50 to 2614 kHz, obtained in long-term observational programmes in Central Europe, are compared with corresponding absorption values calculated from electron density profiles of the International Reference Ionosphere (IRI-1979) using the full-wave method.Discrepancies between calculated and observed absorption values were found for the diurnal and the solar-cycle variation, the amplitudes of the solar-cycle variation of absorption being considerably larger than the observed variation.A modification of the solar-activity dependence of the D-region electron density parameters is derived, which provides an improvement of the solar-cycle variation as well as the diurnal variation of the IRI electron density profiles.  相似文献   

10.
11.
In this study we analyze the Ground Level Enhancement Event No 70 observed on December 13, 2006, by correlating the observations from two research topics: Cosmic rays and Very Low Frequency (VLF < 30 kHz) wave propagation, as two ground based techniques for the detection of solar proton events, and their impact on the lower ionosphere. The observations have been endorsed from recordings of worldwide network ground based Neutron Monitors as well as by satellite data from the satellites GOES 12 (www.swpc.noaa.gov) and Pamela (www.pamela.roma2infn.it).  相似文献   

12.
We compute the height profile of the electron production rate q resulting from high energy solar particle flux with spectrum D(E)=KE?n. Cut-offs energies of 10, 20, 30 and 40 MeV and power indices n from 1 to 6 are used. The profiles are normalized for K = 1 particle/(cm2.s.sr.MeV) such that they might be helpful when quantitatively investigating corpuscular effects of proton flares in the height interval 35 to 100 km.  相似文献   

13.
This paper presents the results of modeling the ionospheric effect of the seismogenic electrostatic field (SEF) seen at the earth’s surface as a perturbation of the vertical atmospheric electrostatic field in the earthquake preparation zone. The SEF distribution at ionospheric altitudes is obtained as an analytical solution of the continuity equation for the electric current density. It is shown that at night, the horizontally large scale SEF can efficiently penetrate into the ionosphere and produce noticeable changes in the horizontal distribution of the F region electron density. The results suggest that the seismogenic electrostatic field could be a possible source for the ionospheric variations observed over Taiwan before the strong Chi Chi earthquake of September 21, 1999.  相似文献   

14.
The PORCUPINE sounding rocket project provided the opportunity to study the dynamics of an artificially injected plasma beam in the near-Earth space. The structure of the plasma beam, its propagation across the magnetic field as well as the resulting wave phenomena will be discussed.  相似文献   

15.
The paper discusses how profiles of electron and/or ion distributions that are produced by two different computer models can be smoothly coupled together. The first of these models is the empirical International Reference Ionosphere which produces a vertical profile of ionospheric parameters up to an altitude of 1000 km. The second is a physically-based, diffusive equilibrium model of the plasmasphere based upon the theoretical work of Angerami and Thomas /1/, in which plasma is constrained to move parallel to the Earth's magnetic field lines. Some problems associated with this work are considered, as are some initial results.  相似文献   

16.
The Two-stream Instability (TSI) generation is studied analytically in the lunar ionosphere. The TSI is a tiny perturbation in the electron plasma density, due to which an electric field grows with time and this growth is facilitated by the electron plasma in the background. In lunar ionosphere, the TSI comes into existence when the solar wind interacts unhindered with the tenuous lunar electron plasma in the surface bound exosphere. In this study, the conditions which allow the TSI to form and the subsequent instability growth with time i.e. the growth factor, is estimated. Initially, the threshold condition for the TSI to take place is determined. Thereafter, the solar wind and lunar plasma parameter contribution to trigger TSI is investigated along with the effect of these parameters in the evolution of TSI. The plasma TSI evolution with the passage of time is also depicted in phase space diagram with Particle-In-Cell simulations.  相似文献   

17.
18.
An outline is given of early aeronomical ideas about the formation of the ionosphere by solar wave radiation, and its development under the impetus of increasing basic knowledge. In particular, the development concerning solar radiation in the far ultraviolet and X-ray ranges is discussed (Sect. 1). General considerations on the relation with observable ionospheric parameters are given in Sect. 2 while the individual layers are discussed in Sect. 3. It is found that elder investigations, with wrong assumptions came to the right densities while their estimates of production rates were far too low. Since two years only satellite and laboratory data allow satisfying estimates.  相似文献   

19.
Using daytime numerical ionospheric profiles from W. Becker's mid-latitude collection, the geometric parameters of 3 or 4 LAY-functions were determined by best fit while all amplitudes were redetermined step by step with a least squares criterion. It appeared that the transition height and scale of the main function are interrelated while all other geometric parameters are independent. Median values for a spring and a summer period are found, and relations with the peak altitude and half-density thickness of the input profile are established.  相似文献   

20.
The interaction of a high-voltage sphere with both magnetized and unmagnetized plasmas was studied with an electrostatic fluid code. Simulations were conducted for a wide range of sphere and plasma parameters. Depending on the conditions, one can observe a propagating spherical double layer, an electron ringing, a stable rapidly-rotating electron density torus, as well as spherical and toroidal discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号