首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

2.
The electron temperature (Te) variation in the mid-latitude ionosphere at altitudes between 120 – 800 km has been modelled for various seasonal and solar-cycle conditions. The calculated electron temperatures are consistent with plasma densities and ion temperatures computed from a time-dependent ionospheric model. The Te distribution can be represented by a subset of standard Te profiles. Te above 200 km is controlled by the magnetospheric heat flux into the ionosphere. For realistic values of the magnetospheric heat flux, the maximum electron temperature ranges from 3000 to 10,000 K at 800 km. The effect of increasing the heat flux is to increase the topside temperature but retain the profile shape. Hence, given a topside Te observation and selection of an appropriate profile shape, the entire Te distribution can be computed.  相似文献   

3.
4.
Langmuir probe measurements made at solar maximum from the Dynamics Explorer-2 satellite in 1981 and 1982 are employed to examine the latitudinal variation of electron temperature, Te, at altitudes between 300 and 400 km and its response to 27 day variations of solar EUV. Comparison of these data with Te models based on the solar minimum measurements from Atmosphere Explorer-C suggest that the daytime Te does not change very much during the solar cycle, except at low latitudes where an especially large 27 day variation occurs. The 27 day component decreases from about 7°/F10.7 unit at the equator to 3°/F10.7 unit at 851V 3 middle and higher latitudes. From these DE-2 measurements, and those from AE-C, we conclude that the daytime Te near the F2 peak is more responsive to short-term (daily) variations in F10.7 than to any longer term changes that may occur between solar minimum and solar maximum. To investigate this sensitivity of the dayside ionosphere to solar activity we employ the inverse relationship of Te and Ne, that was found at solar minimum, to see if it can be used to order the Te behaviour at solar maximum. We introduce a simple quadratic correction for the F10.7 influence on Te based on the entire daytime AE-C and DE-2 data base between 300 and 400 km. Although this equation may be found useful, the systematic deviations of the DE-2 data suggest that the solar minimum model does not accurately describe the Te-Ne relationships at solar maximum, at least above 300 km where the DE-2 measurements were made. Future work with this data base should attempt to see if such a relationship exists.  相似文献   

5.
A database of electron temperature (Te) measurements comprising of most of the available satellite measurements in the topside ionosphere is used for studying the solar activity variations of the electron temperature Te at different latitudes, altitudes, local times and seasons. The Te data are grouped into three levels of solar activity (low, medium, high) at four altitude ranges, for day and night, and for equinox and solstices. We find that in general Te changes with solar activity are small and comparable in magnitude with seasonal changes but much smaller than the changes with altitude, latitude, and from day to night. In all cases, except at low altitude during daytime, Te increases with increasing solar activity. But this increase is not linear as assumed in most empirical Te models but requires at least a parabolic approximation. At 550 km during daytime negative as well as positive correlation is found with solar activity. Our global data base allows to quantify the latitude range and seasonal conditions for which these correlations occur. A negative correlation with solar activity is found in the invdip latitude range from 20 to 55 degrees during equinox and from 20 degrees onward during winter. In the low latitude (20 to −20 degrees invdip) F-region there is almost no change with solar activity during solstice and a positive correlation during equinox. A positive correlation is also observed during summer from 30 degrees onward.  相似文献   

6.
Our empirical model of electron density (ne) for quiet and weakly disturbed geomagnetic conditions (Kp not greater 4) takes account of comparative analysis of existing models and of experimental data obtained by rockets and incoherent scatter radar. The model describes the ne distribution in the 80 to 200 km height range at low and middle latitudes, and to some extent, in the subauroral region. It is presented in analytical form thus allowing one to calculate electron density profiles for any time. The electron density distribution at 140 km depends on the season (day of the year) and on the solar zenith angle. Profile variations during the day are for one season shown. Different from other models, ours specifies the variations during sunrise and sunset and reflects the particular profile shape at night admitting the occurrence of an intermediate layer.  相似文献   

7.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

8.
Employing Atmsophere Explorer-C measurements made in 1974, just prior to solar minimum, Brace and Theis /1/ demonstrated that a remarkably consistent inverse relationship existed between the electron density Ne and temperature Te in the F-region. In this paper we use later data from AE-C, taken when solar activity was rising (1975–1978), and Dynamics Explorer-2 data taken at solar maximum (1981), to examine how the temperature and density relationship changes with solar activity. We find that the solar maximum Te is a factor of two larger than the solar minimum Te for the same values of Ne. Te does not necessarily increase with solar activity, however, because Ne increases enough to approximately cancel the effect of higher solar extreme ultraviolet heating. We find that the effect of solar activity can be accounted for by a simple function of the F10.7 cm index that multiplies the solar minimum equation of Brace and Theis /1/.  相似文献   

9.
Based on the spectrophotometric data, by decomposition of the observed continuum, the power - law continuum characteristics of the central source are obtained. The behaviour of both electron temperature Te and density ne in the Narrow - Line Region (NLR) of NGC 7469 is discussed on the thermal and ionization equilibria calculations. Te in NLR of the Sy1 galaxies are higher than the Sy2 ones, and the possible explanation is the lack of the dense (ne 1010 cm−3) zone close to the central source in the Sy2 galaxies.  相似文献   

10.
Solar dependence of electron and ion temperatures (Te and Ti) in the ionosphere is studied using RPA data onboard SROSS C2 at an altitude of ∼500 km and 77°E longitude during early morning hours (04:00–07:00 LT) for three solar activities: solar minimum, moderate and maximum during winter, summer and equinox months in 10°S–20°N geomagnetic latitude. In winter the morning overshoot phenomenon is observed around 06:00 LT (Te enhances to ∼4000 K) during low-solar activity and to Te ∼ 3800 K, during higher solar activity. In summer, it is observed around 05:30 LT, but the rate of Te enhancement is higher during moderate solar activity (∼2700 K/hr) than the low-solar activity (∼1700 K/hr). During equinox, this phenomenon is delayed and is observed around 06:00 LT (∼4200 K) during all three activities.  相似文献   

11.
The Moon is immersed in plasma environment. The most interesting challenge of the lunar plasma– field environment is that it is alternatively dominated by the extended but variable outer atmosphere of the Earth – the magnetosphere – and by the extended but highly variable solar atmosphere – the solar wind. Understanding the plasma environment and its interaction with the lunar surface will be beneficial to both manned and robotic surface exploration activities and to scientific investigations. Presented is a preliminary map of variations of lunar surface electric potential over the day side and night side using probe equations and a discussion on dust dynamics in this E-field structure using the data from Electron Reflectometer in Lunar Prospector spacecraft during 1998–1999. On the day side, potential is around 5 V and on the night side it reaches up to −82 V. On the night side region, only highly energetic electrons can overcome this large negative potential. The variation at electron temperature (Te) strongly reflects in the surface potential. The potential reaches to a value of −82 V for Te = 58 eV. Surface charging causes the electrostatic transport of charged dust grains. Dust grain size of 0.1 μm shows a levitation height of 4.92 m on lunar day side, 748 m on terminator region and 3.7 km on the night side. The radius of maximum sized grain to be lofted, Rmax, peaks at the terminator region (Rmax = 0.83 μm). At the transition region dust levitation is almost absent. This region is most suited for exploration activities as the region is free from hazards caused by lunar dust.  相似文献   

12.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   

13.
This paper investigates the ionospheric storm of December 19–21, 2015, which was initiated by two successive CME eruptions that caused a G3 space weather event. We used the in situ electron density (Ne) and electron temperature (Te) and the Total Electron Content (TEC) measurements from SWARM-A satellite, as well as the O/N2 observations from TIMED/GUVI to study the ionospheric impact. The observations reveal the longitudinal and hemispherical differences in the ionospheric response to the storm event. A positive ionospheric storm was observed over the American, African and Asian regions on 20 December, and the next day showed a negative storm. Both these exhibited hemispheric differences. A positive storm was observed over the East Pacific region on 21 December. It is seen that the net effect of both the disturbance dynamo electric field and composition differences become important in explaining the observed variability in topside ionospheric densities. In addition, we also discuss the Te variations that occurred as a consequence of the space weather event.  相似文献   

14.
A homogeneous series of 25 years, 1959–1983, of daily measurements of low-frequency radio wave reflection heights in the lower ionosphere (around 80 km), at constant zenith distance of the Sun, has been analysed. After removing the 11-yr solar cycle variation from these data by means of empirical regression coefficients with the solar activity index, F10.7, a significant residual variation remains with a maximum in 1965 and a minimum in 1975. This residual can be interpreted in terms of a corresponding non-solar variation of neutral air pressure at 80 km, thus indicating that recent climatic temperature changes in the middle atmosphere are of quasi-cyclic character rather than a monotonous trend.  相似文献   

15.
Instead of the existing analytic distribution of the electron temperature profile used in the IRI a two linear-segment profile is proposed. This is simple to handle and can readily be matched to different experimental data from ground-based, rocket and satellite measurements. It is shown how from such data the entire profile can be determined in the height range from 120 km up to 1500 km, which includes upper heights not yet covered by the IRI.  相似文献   

16.
The feasibility of determining cirrus “emissivity” from combined stereoscopic and infrared satellite observations in conjunction with radiosounding data is investigated for a particular case study. Simultaneous visible images obtained during SESAME-1979 from two geosynchronous GOES meteorological satellites were processed on the NASA/Goddard interactive system (AOIPS) and were used to determine the stereo cloud top height ZC as described by Hasler [1]. Iso-contours of radiances were outlined on the corresponding infrared image. Total brightness temperature TB and ground surface brightness temperature TS were inferred from the radiances. The special SESAME network of radiosoundings was used to determine the cloud top temperature TCLD at the level defined by ZC. The “effective cirrus emissivity” NE where N is the fractional cirrus cloudiness and E is the emissivity in a GOES infrared picture element of about 10 km × 10 km is then computed from TB, TS and TCLD.  相似文献   

17.
To improve the accuracy of the real time topside electron density profiles given by the Digisonde software a new model-assisted technique is used. This technique uses the Topside Sounder Model (TSM), which provides the plasma scale height (Hs), O+–H+ transition height (HT), and their ratio Rt = Hs/HT, derived from topside sounder data of Alouette and ISIS satellites. The Topside Sounder Model Profiler (TSMP) incorporates TSM and uses the model quantities as anchor points in construction of topside density (Ne) profiles. For any particular location, TSMP calculates topside Ne profiles by specifying the values of foF2 and hmF2. In the present version, TSMP takes the F2 peak characteristics – foF2, hmF2, and the scale height at hmF2 – from the Digisonde measurements. The paper shows results for the Digisonde stations Athens and Juliusruh. It is found that the topside scale height used in Digisonde reconstruction is less than that extracted from topside sounder profiles. Rough comparison of their bulk distributions showed that they differ by an average factor of 1.25 for locations of Athens and Juliusruh. When the Digisonde scale heights are adjusted by this factor, the reconstructed topside profiles are close to those provided by TSM. Compared with CHAMP reconstruction profiles in two cases, TSMP/Digisonde profiles show lower density between 400 and 2000 km.  相似文献   

18.
Recent review study done jointly by 19 experts of 17 institutes shows zero trend of temperature in the upper mesosphere. In the light of this latest development, we have examined the long-term changes in electron density, [e], in this region. The study has been concentrated at 80 km. At this altitude, electrons are mainly produced by the interaction of nitric oxide, NO, by solar Ly-α. Any long-term change in this flux will affect trend of [e]. Considering this flux proportional to 10.7 cm solar flux, analysis of available 10.7 cm solar flux data from 1948 to 2003 has been made. A decreasing trend up to about 1970 and then an increasing trend are found. The over-all increasing trend of Ly-α flux during the past five decades is ∼0.17% per year. This increase also gives a ∼0.17% increasing trend per year in [e]. This non-anthropogenic increase is much less compared to the observed increase in [e] which is reported to be >0.7% per year. The observed increase in [e] of this magnitude will then, predominantly, be due to the anthropogenic effect. In zero trend in temperature, significant change in electron loss coefficient, αeff, and [NO] are unlikely to take place to cause a significant change in [e]. The increase in [e] > 0.7% per year then can be explained by considering a decreasing trend in [O2].  相似文献   

19.
This paper discusses photometric measurements made of the ionospheric excitation of the line λ = 5577A? at the time of electron beam injection from a rocket into the Earth's ionosphere. The gradual increase of the glow intensity per impulse occurs due to accumulation of the energy of excited states of N2(A3Σ+u) and O(′S) during their lifetimes. The large disturbed zone in the near-rocket environment (size >500 m) is connected via the interaction of ions accelerated in the rocket potential field with ionospheric components. The glow intensity modulation is observed at a height of ~98 km during the electron beam injection simultaneously with the ignition of the beam-plasma discharge (BPD). The intensity minima are explained by a decrease of the energy of accelerated ions due to effective neutralization of the rocket body by the BPD plasma. The height profile of the glow intensity revealed two maxima at heights of ~103 km and ~115 km. The second maximum (at ~115 km) indicates that, at these heights, both collision and collision-free mechanisms of accelerated ion energy transport to ionospheric components exist.  相似文献   

20.
The topside ionosphere scale height extracted from two empirical models are compared in the paper. The Topside Sounder Model (TSM) provides directly the scale height (HT), while the incoherent scatter radar ionospheric model (ISRIM) provides electron density profiles and its scale height (HR) is determined by the lowest gradient in the topside part of the profile. HT and HR are presented for 7 ISR locations along with their dependences on season, local time, solar flux F10.7, and geomagnetic index ap. Comparison reveals that HT values are systematically lower than respective HR values as the average offset for all 7 stations is 55 km. For the midlatitude stations Arecibo, Shigaraki, and Millstone Hill this difference is reduced to 43 km. The range of variations of HR is much larger than that of HT, as the HT range overlaps the lower part of the HR range. Dependences on ap, DoY and LT are much stronger in the ISRIM than in TSM. This results in much larger values of HR at higher ap. Diurnal amplitude of HR is much larger than that of HT, with large maximum of HR at night. The present comparison yields the conclusion that the ISR measurements provide steeper topside Ne profiles than that provided by the topside sounders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号