首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
小行星俘获(ACR)任务是美国Keck空间研究中心发起的一项深空探测任务。该任务计划选定一颗近地小行星,通过口袋式抓捕系统对其实施抓捕,并于2025年左右将其带回近月空间。文章介绍了ACR任务的内容和系统设计,具体包括:航天器总体构型、抓捕分系统、探测识别分系统和控制与推进分系统;对小行星抓捕的目标探测与识别、旋转匹配、抓捕、消旋、轨道转移等核心操作。基于ACR任务,提出了空间目标俘获技术的需求与应用、抓捕航天器系统设计的启示;基于我国目前的技术研究情况,总结分析了发展空间目标俘获任务所需的关键技术,如大功率柔性太阳翼、长时间大范围轨道机动、目标探测与识别、快速机动、目标抓捕与消旋。  相似文献   

3.
4.
航天器姿控及有效载荷设备总装时, 其安装精度是保证分系统正常工作、完成任务的关键技术指标之一。文章基于型号实践, 依据我国现有航天器的结构类型及设备安装特点, 论述了航天器结构本体在各种工作环境、各个阶段对航天器设备总装的精度影响要素;提出了分析、验证方法以及保证精度及可靠性的措施。可对未来的航天器型号的结构设计、总装设计、工艺及测量实施提供参考。  相似文献   

5.
“伽利略”卫星在轨任务控制系统高级规范综述   总被引:1,自引:0,他引:1  
肖鹏 《航天器工程》2012,21(1):97-101
重点描述了"伽利略"卫星在轨任务控制系统高级规范的相关内容,其中包括系统规范和子系统规范,如系统监测和控制子系统、遥测监测子系统、遥控指令子系统和数据归档子系统等;就如何借鉴"伽利略"卫星在轨任务控制系统高级规范,提出了一些开展我国星座卫星在轨任务控制系统设计的策略和方法,如设计方法、实现途径、自动化和安全策略等。  相似文献   

6.
在设计交会对接绕飞段的制导方案时,除考虑燃耗因素外,轨迹安全性设计指标也应予以满足。本文基于C-W方程的经典双冲量控制策略应用于绕飞段,在以往固定时间的双冲量控制研究的基础上,分别以燃耗、轨迹被动安全性、任务恢复执行能力和初始状态偏差作为独立约束条件,利用MATLAB计算机寻优,得到逐个独立约束下的控制时间的范围,同时采取逐层缩小的方式,最终获得了满足绕飞段轨迹安全性的设计要求以及满足多种约束条件的一种可以作为绕飞段优选的控制策略的双冲量控制方法。  相似文献   

7.
论述在GPS接收机三个功能模块中基带信号处理模块的具体作用。利用FPGA技术的先进性和软件无线电技术的灵活性开发出具有自主知识产权的功能模块。介绍其设计实现,着重于伪码生成器和NCO的实现,同时给出相关的仿真结果。  相似文献   

8.
The feasible rendezvous, flyby and sample return mission scenario to different spectral-type asteroids for the 2015–2025 are investigated. The emphasis is put on the potential target selection and the design of preliminary interplanetary transfer trajectory in this paper. First, according to different scientific motivations, some potential targets with different spectral-type and physical property are selected. Then, some optimal rendezvous and sample return opportunities for different spectral-type asteroids are presented by using pork-chop plots method and Sequential Quadratic-Programming (SQP) algorithm. In order to reduce the launch energy and total velocity increments for sample return mission, the Earth swingby strategy is used. In addition, the feasible trajectory profiles of flyby and rendezvous with two different spectral-type asteroids in one mission are discussed. A hybrid optimization method combing the Differential Evolution (DE) algorithm and SQP algorithm is introduced as a trajectory design method for the mission. Finally, some important parameters of transfer trajectory are analyzed, which would have a direct impact on the design of spacecraft subsystem, such as communication, power and thermal control subsystem.  相似文献   

9.
In an environment of declining financial budgets for space projects, new approaches - such as Design-To-Cost - are being implemented to improve today's satellite design processes. Using an example of a current mission (the power subsystem of the Solar Probe spacecraft) under study at NASA's Jet Propulsion Laboratory, the main part of the paper discusses an Integrated System Model (structured into a performance model, a cost model, and an effectiveness model) that is part of a model-based design process used to perform cost-effectiveness trades. A simulation tool is used during the first step to size the components of the power subsystem, and then simulate its performance during operation. The determined dimensions are transferred into an EXCELTM-spreadsheet and linked to the components' costs. With a cost accounting tool that combines cost estimating relationships with the Work Breakdown Structure of the power subsystem, the life-cycle cost of each alternative design concept is computed. To determine the cost-risk of the different design alternatives for each component, cost probability distributions are introduced. By performing Monte-Carlo simulations, cost sensitivities are revealed. In the next step of the trade study process, the effectiveness of the alternatives is analyzed. Having determined cost and effectiveness, estimates can be made for where the different alternatives lie in the design space. The last part of the paper identifies the main drivers for the spacecraft's performance and cost. Finally it is shown how the mission design benefited from the Integrated System Model and from the application of Design-To-Cost.  相似文献   

10.
程超  周林 《航天器工程》2009,18(1):108-113
基于我国即将开展的长期载人航天任务,针对航天器上大量的内务信息,分析了建立内务管理信息系统的需求背景,提出建立统一位置编码体系的观点,并以分系统存储位置编码设计为例,详细介绍了编码的设计方法,建立内务信息数据库,探讨了内务管理信息系统的设计方法,对星上变化内务信息数据传输进行设计,并结合在轨运行过程对该系统的使用加以说明。  相似文献   

11.
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.  相似文献   

12.
This paper proposes the application of a nonlinear control technique for coupled orbital and attitude relative motion of formation flying. Recently, mission concepts based on the formations of spacecraft that require an increased performance level for in-space maneuvers and operations, have been proposed. In order to guarantee the required performance level, those missions will be characterized by very low inter-satellite distance and demanding relative pointing requirements. Therefore, an autonomous control with high accuracy will be required, both for the control of relative distance and relative attitude. The control system proposed in this work is based on the solution of the State-Dependent Riccati Equation (SDRE), which is one of the more promising nonlinear techniques for regulating nonlinear systems in all the major branches of engineering. The coupling of the relative orbital and attitude motion is obtained considering the same set of thrusters for the control of both orbital and attitude relative dynamics. In addition, the SDRE algorithm is implemented with a timing update strategy both for the controller and the proposed nonlinear filter. The proposed control system approach has been applied to the design of a nonlinear controller for an up-to-date formation mission, which is ESA Proba-3. Numerical simulations considering a tracking signal for both orbital and attitude relative maneuver during an operative orbit of the mission are presented.  相似文献   

13.
《Acta Astronautica》1987,15(9):697-701
This paper describes rationale, criteria and resulting concepts and problematics related to Columbus/Space Station operations.Its content, whilst acknowledging basic operational principles developed by NASA, is based on ESA and European National studies and its conclusions illustrate a consistent and coherent European approach.Starting with the European experience in unmanned and manned operations, the essential new features of the operation of the foreseen manned orbital infrastructure are briefly described. The main aspects governing the approach to future space operations design and implementation are highlighted and criteria for assessing this implementation are discussed.This is followed by illustrative discussion of how specific operational functions can be implemented.Problems and unresolved issues are also identified. rf;)  相似文献   

14.
高长生  郑建华  荆武兴  吴霞 《宇航学报》2006,27(6):1152-1156
研究了相对黄道面有一定倾角的探测器轨道设计的问题。以金星借力轨道设计为例,分析了轨道偏心率与轨道倾角增量之间的关系。根据C3匹配原理搜索了“地球-中间天体-地球”多天体交会的发射窗口。最后,设计了与地球轨道周期相等的三次地球借力轨道,该轨道倾角可以达到黄纬30°以上。理论分析及仿真结果表明:基于地球引力设计此类轨道时,应采用多天体交会方案,才能既保证地球逃逸能量低,又保证首次飞入地球影响球前轨道偏心率较大的双重指标;同时应采用多次地球借力方案,该方案具有每次借力后轨道偏心率逐渐减小的特点,当其减小到零时,再次借力后轨道倾角不会继续增加。  相似文献   

15.
Low-thrust electric propulsion is increasingly being used for spacecraft missions primarily due to its high propellant efficiency. As a result, a simple and fast method for low-thrust trajectory optimization is of great value for preliminary mission planning. However, few low-thrust trajectory tools are appropriate for preliminary mission design studies. The method presented in this paper provides quick and accurate solutions for a wide range of transfers by using numerical orbital averaging to improve solution convergence and include orbital perturbations. Thus, preliminary trajectories can be obtained for transfers which involve many revolutions about the primary body. This method considers minimum fuel transfers using first-order averaging to obtain the fuel optimum rates of change of the equinoctial orbital elements in terms of each other and the Lagrange multipliers. Constraints on thrust and power, as well as minimum periapsis, are implemented and the equations are averaged numerically using a Gausian quadrature. The use of numerical averaging allows for more complex orbital perturbations to be added in the future without great difficulty. The effects of zonal gravity harmonics, solar radiation pressure, and thrust limitations due to shadowing are included in this study. The solution to a transfer which minimizes the square of the thrust magnitude is used as a preliminary guess for the minimum fuel problem, thus allowing for faster convergence to a wider range of problems. Results from this model are shown to provide a reduction in propellant mass required over previous minimum fuel solutions.  相似文献   

16.
The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and thus data volume.  相似文献   

17.
本文对世界首颗独立完成地月转移、近月制动、环月飞行的微卫星“龙江二号”进行了介绍。首先阐述了龙江二号的任务目标和总体方案;然后重点分析了轨道设计与控制、复杂电磁干扰的标定与抑制、宽视场三维基线干涉测量等关键技术难点;接着回顾了任务的实施过程;最后详细介绍了低频射电探测仪、沙特光学相机和VHF/UHF通信模块与学生微型CMOS相机等有效载荷,并展示了上述载荷获取的初步成果。  相似文献   

18.
杨永安  冯祖仁  张宏伟  吴云鹤 《宇航学报》2006,27(4):700-703,719
针对航天器入轨段,如何从多组初始轨道中选择一组最优或最符合客观实际轨道根数问题,进行了深入地理论分析,提出了基于逼近理想解排序法的航天器初始轨道根数选优算法。描述了逼近理想解排序法的设计思想以及求解的六个基本步骤;针对航天器初始轨道的设计特点,巧妙地利用标称轨道作为理想解,偏差轨道作为负理想解,成功地应用逼近理想解排序法建立了初始轨道根数选优的决策数学模型,并以一颗典型的太阳同步轨道卫星为例,验证了其数学模型和选优算法的合理性和正确性。  相似文献   

19.
载人小行星探测的任务特点与实施途径探讨   总被引:2,自引:1,他引:1  
介绍了载人小行星探测的发展现状,对目前美国基于"猎户座"飞船的载人小行星探测的概要方案进行了描述,包括探测器系统组成、运载火箭和飞行方案等内容。从速度增量、目标星引力等方面,分析了载人小行星探测的任务特点,并与载人火星探测、载人月球探测以及无人小行星探测的任务特点进行了比较。给出了载人小行星探测的实施途径建议,包括目标星选择、载人飞船系统设计等。讨论了其所涉及的推进、星际飞行安全保障、小行星表面行走等关键技术。研究结果可为我国开展载人深空探测提供参考。  相似文献   

20.
This paper presents a computational methodology to predict the satellite system-level effects resulting from impacts of untrackable space debris particles. This approach seeks to improve on traditional risk assessment practices by looking beyond the structural penetration of the satellite and predicting the physical damage to internal components and the associated functional impairment caused by untrackable debris impacts. The proposed method combines a debris flux model with the Schäfer–Ryan–Lambert ballistic limit equation (BLE), which accounts for the inherent shielding of components positioned behind the spacecraft structure wall. Individual debris particle impact trajectories and component shadowing effects are considered and the failure probabilities of individual satellite components as a function of mission time are calculated. These results are correlated to expected functional impairment using a Boolean logic model of the system functional architecture considering the functional dependencies and redundancies within the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号