首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we calculate the effect of atmospheric dust on the orbital elements of a satellite. Dust storms that originate in the Martian surface may evolve into global storms in the atmosphere that can last for months can affect low orbiter and lander missions. We model the dust as a velocity-square depended drag force acting on a satellite and we derive an appropriate disturbing function that accounts for the effect of dust on the orbit, using a Lagrangean formulation. A first-order perturbation solution of Lagrange's planetary equations of motion indicates that for a local dust storm cloud that has a possible density of 8.323×10−10 kg m−3 at an altitude of 100 km affects the orbital semimajor axis of a 1000 kg satellite up −0.142 m day−1. Regional dust storms of the same density may affect the semimajor axis up to of −0.418 m day−1. Other orbital elements are also affected but to a lesser extent.  相似文献   

2.
An analysis is performed on four typical materials (aluminum, liquid hydrogen, polyethylene, and water) to assess their impact on the length of time an astronaut can stay in deep space and not exceed a design basis radiation exposure of 150 mSv. A large number of heavy lift launches of pure shielding mass are needed to enable long duration, deep space missions to keep astronauts at or below the exposure value with shielding provided by the vehicle. Therefore, vehicle mass using the assumptions in the paper cannot be the sole shielding mechanism for long duration, deep space missions. As an example, to enable the Mars Design Reference Mission 5.0 with a 400 day transit to and from Mars, not including the 500 day stay on the surface, a minimum of 24 heavy lift launches of polyethylene at 89,375 lbm (40.54 tonnes) each are needed for the 1977 galactic cosmic ray environment. With the assumptions used in this paper, a single heavy lift launch of water or polyethylene can protect astronauts for a 130 day mission before exceeding the exposure value. Liquid hydrogen can only protect the astronauts for 160 days. Even a single launch of pure shielding material cannot protect an astronaut in deep space for more than 180 days using the assumptions adopted in the analysis. It is shown that liquid hydrogen is not the best shielding material for the same mass as polyethylene for missions that last longer than 225 days.  相似文献   

3.
Small satellites, weighting between 100 and 200 kg, have witnessed increasing use for a variety of space applications including remote sensing constellations and technology demonstrations. The energy storage/stored power demands of most spacecraft, including small satellites, are currently accommodated by rechargeable batteries—typically nickel–cadmium cells (specific energy of 50 Wh kg−1), or more recently lithium-ion cells (150 Wh kg−1). High energy density is a primary concern for spacecraft energy storage design, and these batteries have been sufficient for most applications. However, constraints on the allowable on-board battery size have limited peak power performance such that the maximum power supply capability of small satellites currently ranges between only 70 and 200 W. This relatively low maximum power limits the capabilities of small satellites in terms of payload design and selection. In order to enhance these satellites' power performance, the research reported in this paper focused on the implementation of super-capacitors as practical rechargeable energy storage medium, and as an alternative to chemical batteries. Compared to batteries, some super-capacitors are able to supply high power at high energy-efficiency, but unfortunately they still have a very low energy density (5–30 Wh kg−1). However, the provision of this high power capability would considerably widen the range of small satellite applications.  相似文献   

4.
On 14 May 2009 the European Space Agency launched 2 space observatories: Herschel (with a 3.5 m mirror it is the largest space telescope ever) will collect long-wavelength infrared radiation and will be the only space observatory to cover the spectral range from far-infrared to sub-millimetre wavelengths, and Planck will look back at the dawn of time, close to the Big Bang, and will examine the Cosmic Microwave Background (CMB) radiation to a sensitivity, angular resolution and frequency range never achieved before. This paper will present the Flight Dynamics, mission analysis challenges and flight results from the first 3 months of these missions.Both satellites were launched on the same Ariane 5 and travelled to the L2 Lagrange point of the sun–earth system 1.5 million km from the earth in the opposite direction of the sun. There they were injected to a quasi-halo orbit (Herschel) with the dimension of typically 750,000 km×450,000 km, and a Lissajous orbit (Planck) of 300,000 km×300,000 km.In order to reach these Lissajous orbits it is mandatory to perform large trajectory correction manoeuvres during the first days of the mission. Herschel had its main manoeuvres on the first day. Planck had to be navigated on the first day and by a mid-course correction manoeuvre, the L2 orbit insertion manoeuvre was planned on day 50. If these slots were missed, fuel penalties would rapidly increase.This posed a heavy load on the operations teams because both spacecrafts have to be thoroughly checked out and put into the correct modes of their attitude control systems during the first hours after launch.The sequence of events will be presented and explained and the orbit determination results as well as the manoeuvre planning will be emphasised.  相似文献   

5.
The history of the deployment of nuclear reactors in Earth orbits is reviewed with emphases on lessons learned and the operation and safety experiences. The former Soviet Union's “BUK” power systems, with SiGe thermoelectric conversion and fast neutron energy spectrum reactors, powered a total of 31 Radar Ocean Reconnaissance Satellites (RORSATs) from 1970 to 1988 in 260 km orbit. Two of the former Soviet Union's TOPAZ reactors, with in-core thermionic conversion and epithermal neutron energy spectrum, powered two Cosmos missions launched in 1987 in ~800 km orbit. The US’ SNAP-10A system, with SiGe energy conversion and a thermal neutron energy spectrum reactor, was launched in 1965 in 1300 km orbit. The three reactor systems used liquid NaK-78 coolant, stainless steel structure and highly enriched uranium fuel (90–96 wt%) and operated at a reactor exit temperature of 833–973 K. The BUK reactors used U-Mo fuel rods, TOPAZ used UO2 fuel rods and four ZrH moderator disks, and the SNAP-10A used moderated U-ZrH fuel rods. These low power space reactor systems were designed for short missions (~0.5 kWe and ~1 year for SNAP-10A, <3.0 kWe and <6 months for BUK, and ~5.5 kWe and up to 1 year for TOPAZ). The deactivated BUK reactors at the end of mission, which varied in duration from a few hours to ~4.5 months, were boosted into ~800 km storage orbit with a decay life of more than 600 year. The ejection of the last 16 BUK reactor fuel cores caused significant contamination of Earth orbits with NaK droplets that varied in sizes from a few microns to 5 cm. Power systems to enhance or enable future interplanetary exploration, in-situ resources utilization on Mars and the Moon, and civilian missions in 1000–3000 km orbits would generate significantly more power of 10's to 100's kWe for 5–10 years, or even longer. A number of design options to enhance the operation reliability and safety of these high power space reactor power systems are presented and discussed.  相似文献   

6.
We assessed hemodynamic responses induced by orthostatic and mental stressors, using passive head up tilt (HUT) and mental arithmetic (MA), respectively. The 15 healthy males underwent three protocols: (1) HUT alone, (2) MA in supine position and (3) MA+HUT, with sessions randomized and ≥2 weeks apart. In relation to baseline, HUT increased heart rate (HR) (+20.4±7.1 bpm; p<0.001), mean blood pressure (MBP) (+4.7±11.3 mmHg; p<0.05), diastolic blood pressure (DBP) (+6.1±11.6 mmHg; p<0.05) and total peripheral resistance (TPR) (+155±232 dyne*s/cm5; p<0.001) but decreased stroke volume (SV) (?33.1±13.4 ml; p<0.001) and cardiac output (CO) (?0.6±1.0 l/min; p<0.01). MA increased HR (+8.0±6.0 bpm; p<0.001), systolic blood pressure (SBP) (+9.0±7.7 mmHg; p<0.001), MBP (+10.0±6.5 mmHg; p<0.001), DBP (+9.5±7.2 mmHg; p<0.001) and CO (+0.6±0.8 l/min; p<0.01). MA+HUT increased HR (+28.8±8.4 bpm; p<0.001), SBP (+4.6±14.3 mmHg; p<0.05), MBP (+11.2±11.6 mmHg; p<0.001), DBP (+13.5±10.1 mmHg; p<0.001) and TPR (+160±199 dyne*s/cm5; p<0.001) but SV (?34.5±14.6 ml; p<0.001) decreased. Mental challenge during orthostatic challenge elicited greater increases in heart rate, despite similar reductions in stroke volume such as those during orthostatic stress alone. Overall, cardiac output decreases were less with combinations of mental and orthostatic challenges in comparison to orthostasis alone. This would suggest that carefully chosen mental stressors might affect orthostatic responses of people on standing up. Therefore, additional mental loading could be a useful countermeasure to alleviate the orthostatic responses of persons, particularly in those with histories of dizziness on standing up or on return to earth from the spaceflight environment of microgravity.  相似文献   

7.
A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.  相似文献   

8.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

9.
Introduction: This joint US–Russian work aims to establish a methodology for assessing cardiac function in microgravity in association with manipulation of central circulating volume. Russian Braslet-M (Braslet) occlusion cuffs were used to temporarily increase the volume of blood in the lower extremities, effectively reducing the volume in central circulation. The methodology was tested at the International Space Station (ISS) to assess the volume status of crewmembers by evaluating the responses to application and release of the cuffs, as well as to modified Valsalva and Mueller maneuvers. This case study examines the use of tissue Doppler (TD) of the right ventricular (RV) free wall. Results: Baseline TD of the RV free wall without Braslet showed early diastolic E′ (16 cm/s), late diastolic A′ (14 cm/s), and systolic S′ (12 cm/s) velocities comparable with those in normal subjects on Earth. Braslet application caused 50% decrease of E′ (8 cm/s), 45% increase of A′, and no change to S′. Approximately 8 beats after the Braslet release, TD showed E′ of 8 cm/s, A′ of 12 cm/s, and S′ of 13 cm/s. At this point after release, E′ did not recover to baseline values while l A′ and S′ did recover. The pre-systolic cross-sectional area of the internal jugular vein without Braslet was 1.07 cm2, and 1.13 cm2 10 min after the Braslet was applied. The respective cross-sectional areas of the femoral vein were 0.50 and 0.54 cm2. The RV myocardial performance Tei index was calculated by dividing the sum of the isovolumic contraction time and isovolumic relaxation time by the ejection time ((IVCT+IVRT)/ET); baseline and Braslet-on values for Tei index were 0.25 and 0.22, respectively. Braslet Tei indices are within normal ranges found in healthy terrestrial subjects and temporarily become greater than 0.4 during the dynamic Braslet release portion of the study. Conclusions: TD modality was successfully implemented in space flight for the first time. TD of RV revealed that the Braslet influenced cardiac preload and that fluid was sequestered in the lower extremity interstitial and vascular space after only 10 min of application. This report demonstrates that Braslet application has an effect on RV physiology in long-duration space flight based on TD, and that this effect is in part due to venous hemodynamics.  相似文献   

10.
《Acta Astronautica》2008,62(11-12):995-1001
A mission to the surface of Venus would have high scientific value, but most electronic devices and sensors cannot operate at the 450 °C ambient surface temperature of Venus. Power and cooling systems were analyzed for Venus surface operation. A radioisotope power and cooling system was designed to provide electrical power for a probe operating on the surface of Venus. For a mission duration of substantial length, the use of thermal mass to maintain an operable temperature range is likely impractical, and active refrigeration may be required to keep components at a temperature below ambient. Due to the high thermal convection of the high-density atmosphere, the heat rejection temperature was assumed to be at a 500 °C radiator temperature, 50 °C above ambient. The radioisotope Stirling power converter designed produces a thermodynamic power output capacity of 478.1 W, with a cooling power of 100 W. The overall efficiency is calculated to be 23.36%. The mass of the power converter is estimated at approximately 21.6 kg.  相似文献   

11.
The mission complexity of Nanosatellites has increased tremendously in recent years, but their mission range is limited due to the lack of an active orbit control or ∆v capability. Pulsed Plasma Thrusters (PPT), featuring structural simplicity and very low power consumption are a prime candidate for such applications. However, the required miniaturization of standard PPTs and the adaption to the low power consumption is not straightforward. Most investigated systems have failed to show the required lifetime. The present coaxial design has shown a lifetime of up to 1 million discharges at discharge energies of 1.8 J in previous studies. The present paper focuses on performance characterizations of this design. For this purpose direct thrust measurements with a µN thrust balance were conducted. Thrust measurements in conjunction with mass bit determination allowed a comprehensive assessment. Based on those measurements the present µPPT has a total impulses capability of approximately I≈1.7 Ns, an average mass bit of 0.37 µg s−1 and an average specific impulse of Isp≈904 s. All tests have shown very good EM compatibility of the PPT with the electronics of the flight-like printed circuit board. Consequently, a complete µPPT unit can provide a ∆v change of 5.1 m/s or 2.6 m/s to a standard 1-unit or 2-unit CubeSat respectively.  相似文献   

12.
A spacecraft capable of producing higher-than-natural electrostatic charges may achieve propellantless orbital maneuvering via the Lorentz-force interaction with a planetary magnetic field. Development of maneuver strategies for these propellantless vehicles is complicated by the fact that the perturbative Lorentz force acts along only a single line of action at any instant. Relative-motion dynamical models are developed that lead to approximate analytical solutions for the motion of charged spacecraft subject to the Lorentz force. These solutions indicate that the principal effects of the Lorentz force on a spacecraft in a circular orbit are to change the intrack position and to change the orbit plane. A rendezvous example is presented in which a spacecraft with a specific charge of ?3.81 × 10?4 C/kg reaches a target vehicle initially 10 km away (on the same equatorial low-Earth orbit) in 1 day. Fly-around maneuvers may be achieved in low-Earth orbit with specific charges on the order of 0.001 C/kg.  相似文献   

13.
This paper presents the results of a study on design considerations for a 100 W radioisotope thermo-electric generator (RTG). Special emphasis has been put on designing a modular, multi-purpose system with high overall TRL levels and making full use of the extensive Russian heritage in the design of radioisotope power systems. The modular approach allowed insight into the scaling of such RTGs covering the electric power range from 50 to 200 We (EoL). The retained concept is based on a modular thermal block structure, a radiative inner-RTG heat transfer and using a two-stage thermo-electric conversion system.  相似文献   

14.
《Acta Astronautica》2007,60(10-11):939-945
The NASA/JSC sodium potassium (NaK) RORSAT coolant source and propagation model has been extended to 1 mm in diameter via a size distribution, which is an inverse power law fit that has been modified to damp out in the large size regime. This function matches the observed Haystack NaK population down to diameters of about 6 mm. The extrapolated function takes the population to arbitrarily small sizes all the while retaining the mass dominance of the 1–3 cm droplets that is observed in the Haystack data. This result is physically satisfying since the mechanism of NaK ejection appears to be a nonviolent release at low relative velocities. We propose that any NaK particles smaller than about 1 mm that exist would not be due to that mechanism. Instead, we show that such a population could be the result of subsequent collisions of NaK droplets with larger resident space objects and the micrometeoroid population. Our preliminary analysis shows that collisions between these populations are likely in the time period of 1980 through present-day. Though the result of such collisions is generally unknown it is probable that some ejecta of NaK enter the low Earth orbit (LEO) environment as a result. It is these secondary NaK droplets/particles that we contend are the likely impactors noted on returned surfaces.  相似文献   

15.
The scenarios for the long-term habitation of space platforms and planetary stations involve plants as fundamental part of Bioregenerative Life Support Systems (BLSS) to support the crew needs. Several constraints may limit plant growth in space: among them ionizing radiation is recognized to severely affect plant cell at morphological, physiological and biochemical level. In this work, plants of Phaseolus vulgaris L. were subjected to four different doses of X-rays (0.3, 10, 50 and 100 Gy) in order to assess the effects of ionizing radiation on this species and to analyze possible mechanisms carried out to overcome the radiation injuries. The effects of X-rays on plant growth were assessed by measuring stem elongation, number of internodes and leaf dry weight. The integrity of photosynthetic apparatus was evaluated by photosynthetic pigment composition and ribulose 1,5-bisphosphate carboxylase (Rubisco) activity, whereas changes in total antioxidant pool and glutathione S transferase activity (GST) were utilized as markers of oxidative stress. The distribution of phenolic compounds in leaf tissues as natural shielding against radiation was also determined.Irradiation of plants at 0.3 and 10 Gy did not determine differences in all considered parameters as compared to control. On the contrary, at 50 and 100 Gy a reduction of plant growth and a decrease in photosynthetic pigment content, as well as an increase in phenolic compounds and a decrease in total antioxidant content and GST activity were found. Only a slight reduction of Rubisco activity in leaves irradiated at 50 and 100 Gy was found. The overall results indicate P. vulgaris as a species with a good potential to face ionizing radiation and suggest its suitability for utilization in BLSSs.  相似文献   

16.
Field electron emission from aligned multiwalled carbon nanotubes has been assessed to determine if the performance, defined by power consumption, lifetime and emission current, is suitable for use in spacecraft charge neutralisation for field emission electric propulsion (FEEP). Carbon nanotubes grown by chemical vapour deposition (CVD) were mounted on a dual in line chip with a macroscopic (nickel mesh) extractor electrode mounted ~1 mm above the tubes. The nanotubes’ field emission characteristics (emission currents, electron losses and operating voltage) were measured at ~10?4 Pa. An endurance test of one sample, running at a software-controlled constant emission current lasted >1400 h, approaching the longest known FEEP thruster lifetime. The emission corresponds to a current density of ~10 mA/cm2 at a voltage of 150 V. These results, implementing mature extractor-electrode geometry, indicate that carbon nanotubes have considerable potential for development as robust, low-power, long-lived electron emitters for use in space.  相似文献   

17.
Long-term sensitivity of human cells to reduced gravity has been supposed since the first Apollo missions and was demonstrated during several space missions in the past. However, little information is available on primary and rapid gravi-responsive elements in mammalian cells. In search of rapid-responsive molecular alterations in mammalian cells, short-term microgravity provided by parabolic flight maneuvers is an ideal way to elucidate such initial and primary effects. Modern biomedical research at the cellular and molecular level requires frequent repetition of experiments that are usually performed in sequences of experiments and analyses. Therefore, a research platform on Earth providing frequent, easy and repeated access to real microgravity for cell culture experiments is strongly desired. For this reason, we developed a research platform onboard the military fighter jet aircraft Northrop F-5E “Tiger II”. The experimental system consists of a programmable and automatically operated system composed of six individual experiment modules, placed in the front compartment, which work completely independent of the aircraft systems. Signal transduction pathways in cultured human cells can be investigated after the addition of an activator solution at the onset of microgravity and a fixative or lysis buffer after termination of microgravity. Before the beginning of a regular military training flight, a parabolic maneuver was executed. After a 1 g control phase, the parabolic maneuver starts at 13,000 ft and at Mach 0.99 airspeed, where a 22 s climb with an acceleration of 2.5g is initiated, following a free-fall ballistic Keplerian trajectory lasting 45 s with an apogee of 27,000 ft at Mach 0.4 airspeed. Temperature, pressure and acceleration are monitored constantly during the entire flight. Cells and activator solutions are kept at 37 °C during the entire experiment until the fixative has been added. The parabolic flight profile provides up to 45 s of microgravity at a quality of 0.05g in all axes. Access time is 30 min before take-off; retrieval time is 30 min after landing. We conclude that using military fighter jets for microgravity research is a valuable tool for frequent and repeated cell culture experiments and therefore for state-of-the art method of biomedical research.  相似文献   

18.
The present paper describes thrust measurement results for an arcjet thruster using Dimethyl ether (DME) as the propellant. DME is an ether compound and can be stored as a liquid due to its relatively low freezing point and preferable vapor pressure. The thruster successfully produced high-voltage mode at DME mass flow rates above 30 mg/s, whereas it yielded low-voltage mode below 30 mg/s. Thrust measurements yielded a thrust of 0.15 N and a specific impulse of 270 s at a mass flow rate of 60 mg/s with a discharge power of 1300 W. The DME arcjet thruster was comparable to a conventional one for thrust and discharge power.  相似文献   

19.
More than 60 years after the late Nobel laureate Hannes Alfvén had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto–hydrodynamic interactions in a wave like fashion, the technical implementation of Alfvén waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors.Consequently improved since then, the name of the latest concept, relying on magneto-acoustic waves to accelerate electric conductive matter, is MOA2—Magnetic field Oscillating Amplified Accelerator. Based on computer simulations, which were undertaken to get a first estimate on the performance of the system, MOA2 is a corrosion free and highly flexible propulsion system, whose performance parameters might easily be adapted in operation, by changing the mass flow and/or the power level. As such the system is capable of delivering a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. First tests—that are further described in this paper—have been conducted successfully with a 400 W prototype system at an ambient pressure of 0.20 Pa, delivered 9.24 mN of thrust at 1472 s ISP, thereby underlining the feasibility of the concept.Based on these results, space propulsion is expected to be a prime application for MOA2—a claim that is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an ‘afterburner system’ for Nuclear Thermal Propulsion. However, MOA2 has so far seen most of its R&D impetus from terrestrial applications, like coating, semiconductor implantation and manufacturing as well as steel cutting. Based on this observation, MOA2 resembles an R&D paradigm buster, as it is the first space propulsion system, whose R&D is driven primarily by its terrestrial applications. Different terrestrial applications exist, but the most successful scenarios so far revolve around MOA2's unique features with respect to high throughput/low target temperature coatings on sensitive materials. In combination with its intrinsic high flexibility, MOA2 is highly suited for a common space-terrestrial application research and utilisation strategy.This paper presents the recent developments of the MOA2 R&D activities at Q2 Technologie(s), the company in Vienna, Austria, which has been set up to further develop and test the magneto-acoustic wave technology and its applications.  相似文献   

20.
Prolonged weightlessness is associated with declines in musculoskeletal, cardiovascular, and sensorimotor health. Consequently, in-flight countermeasures are required to preserve astronaut health. We developed and tested a novel exercise countermeasure device (CCD) for use in spaceflight with the aim of preserving musculoskeletal and cardiovascular health along with an incorporated balance training component. Additionally, the CCD features a compact footprint, and a low power requirement. Methods: After design and development of the CCD, we carried out a training study to test its ability to improve cardiovascular and muscular fitness in healthy volunteers. Fourteen male and female subjects (41.4±9.0 years, 69.5±15.4 kg) completed 12 weeks (3 sessions per week) of concurrent strength and endurance training on the CCD. All training was conducted with the subject in orthostasis. When configured for spaceflight, subjects will be fixed to the device via a vest with loop attachments secured to subject load devices. Subjects were tested at baseline and after 12 weeks for 1-repetition max leg press strength (1RM), peak oxygen consumption (VO2peak), and isokinetic joint torque (ISO) at the hip, knee, and ankle. Additionally, we evaluated subjects after 6 weeks of training for changes in VO2peak and 1RM. Results: VO2peak and 1RM improved after 6 weeks, with additional improvements after 12 weeks (1.95±0.5, 2.28±0.5, 2.47±0.6 L min?1, and 131.2±63.9,182.8±75.0, 207.0±75.0 kg) for baseline, 6 weeks, and 12 weeks, respectively. ISO for hip adduction, adduction, and ankle plantar flexion improved after 12 weeks of training (70.3±39.5, 76.8±39.2, and 55.7±21.7 N m vs. 86.1±37.3, 85.1±34.3, and 62.1±26.4 N m, respectively). No changes were observed for ISO during hip flexion, knee extension, or knee flexion. Conclusions: The CCD is effective at improving cardiovascular fitness and isotonic leg strength in healthy adults. Further, the improvement in hip adductor and abductor torque provides support that the CCD may provide additional protection for the preservation of bone health at the hip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号